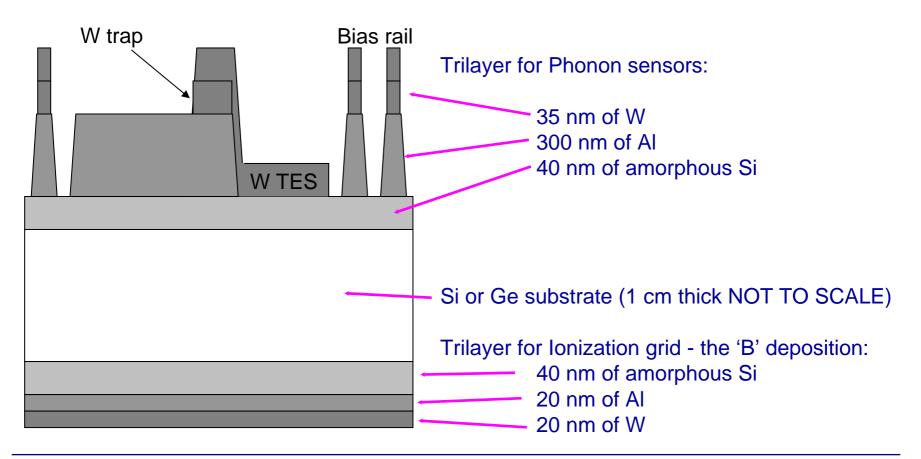


Beta Cage

A Screener of Ultra-Low-Level Radioactive

Surface Contamination


In collaboration with

Dan Akerib, Darren Grant, Kristin Poinar, Tom Shutt (Case), Sunil Golwala, Zeesh Ahmed (Caltech)

(and with work from others who have moved on)

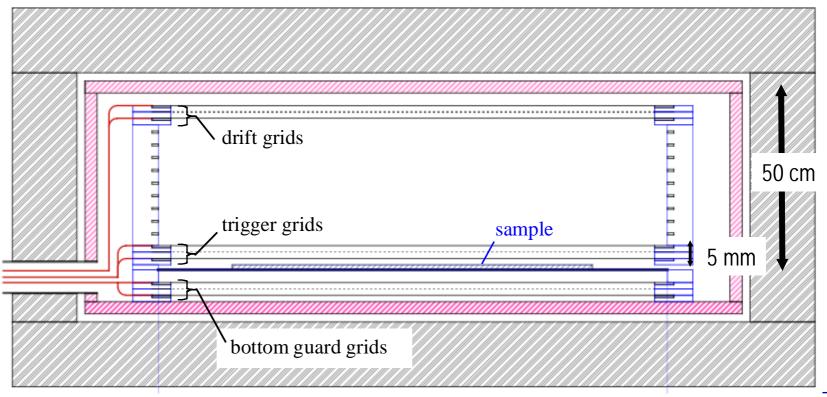
Original Motivation: CDMS

- CDMS experiment limited by beta contaminants on surface or in thin films of detectors
 - Projected 150 kg SuperCDMS experiment could be background free if beta contamination kept < 6 m⁻² day⁻¹ in WIMP energy region

Need for Beta Screening Facility

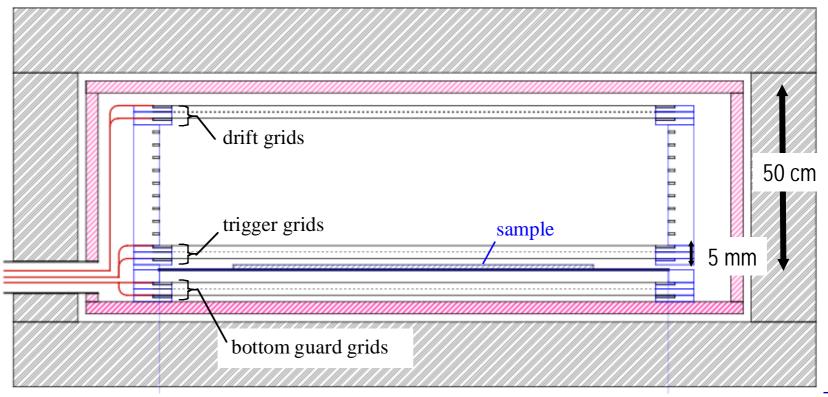
- Better sensitivity to some beta-emitting isotopes than Ge γ detectors or other techniques (ICP-MS, α screeners, etc.)
- Some beta-emitting isotopes can be probed only by their beta emission

Method	Applicable Isotopes
ICP-MS	40 K 48 Ca 50 V 87 Rb 92 Nb 98 Tc 113 Cd 115 In 123 Te
(1 ppb)	$^{138}\mathrm{La}~^{176}\mathrm{Lu}~^{182}\mathrm{Hf}~^{232}\mathrm{Th}~^{235}\mathrm{U}~^{238}\mathrm{U}~^{236}\mathrm{Np}~^{250}\mathrm{Cm}$
ICP-MS	10 Be 36 Cl 60 Fe 79 Se 93 Zr 94 Nb 97 Tc 99 Tc 107 Pd 126 Sn
(1 ppt)	$^{129}\mathrm{I}~^{135}\mathrm{Cs}~^{137}\mathrm{La}~^{154}\mathrm{Eu}~^{158}\mathrm{Tb}~^{166m}\mathrm{Ho}~^{208}\mathrm{Bi}~^{208}\mathrm{Po}~^{209}\mathrm{Po}~^{252}\mathrm{Es}$
γ	${}^{40}\text{K}$ ${}^{50}\text{V}$ ${}^{60}\text{Fe}$ ${}^{60}\text{Co}$ ${}^{93}\text{Zr}$ ${}^{92}\text{Nb}$ ${}^{94}\text{Nb}$ ${}^{93}\text{Mo}$ ${}^{98}\text{Tc}$ ${}^{99}\text{Tc}$ ${}^{101}\text{Rh}$ ${}^{101m}\text{Rh}$
	$^{102m}{\rm Rh}~^{109}{\rm Cd}~^{121m}{\rm Sn}~^{126}{\rm Sn}~^{125}{\rm Sb}~^{129}{\rm I}~^{134}{\rm Cs}~^{137}{\rm Cs}~^{133}{\rm Ba}~^{138}{\rm La}$
	${}^{145}\mathrm{Pm} {}^{146}\mathrm{Pm} {}^{150}\mathrm{Eu} {}^{152}\mathrm{Eu} {}^{154}\mathrm{Eu} {}^{155}\mathrm{Eu} {}^{157}\mathrm{Tb} {}^{158}\mathrm{Tb} {}^{166m}\mathrm{Ho} {}^{173}\mathrm{Lu}$
	174 Lu 176 Lu 172 Hf 179 Ta 207 Bi 208 Bi 232 Th 235 U 238 U 236 Np 241 Pu
α	²¹⁰ Pb ²⁰⁸ Po ²⁰⁹ Po ²²⁸ Ra ²²⁷ Ac ²³² Th
	235 U 238 U 236 Np 241 Pu 250 Cm 252 Es
β only	3 H 14 C 32 Si 63 Ni 90 Sr 106 Ru 113m Cd 147 Pm 151 Sm 171 Tm 194 Os
	204 Tl 10 Be 36 Cl 79 Se 97 Tc 107 Pd 135 Cs 137 La 154 Eu 209 Po

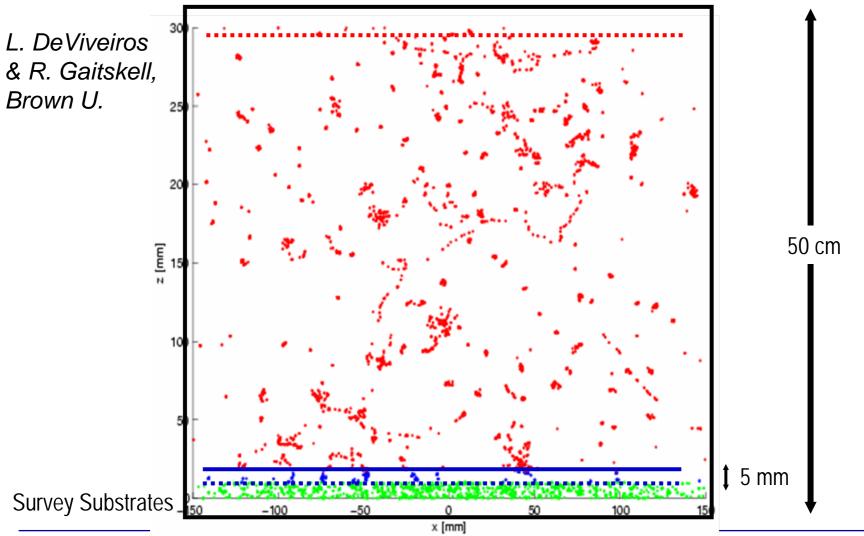

H. Nelson, U

Basic Design Principles

- Backgrounds are proportional to mass of detector
 - Ultraclean materials to minimize internal contamination
 - Underground, shielded apparatus to minimize external backgrounds
- Deploy minimum material needed to stop β s.
 - Gas is best method to achieve this low mass
 - 150 keV $e^- \approx 30$ cm Ne (1 atm)
 - Can identify betas with 300 keV endpoint with 50 cm height
 - Could Use Xe (1 atm) for higher-energy betas (range ~7x less)
 - Not for now (requires vacuum chamber); may try with prototype
- Maximize counting statistics
 - ◆ Large surface area (horizontal dimension) ~1 m²
- Guard region to reject events emitted from outside chamber


BetaCage

- Multiwire proportional counter
- Wires provide minimum surface area for emissions
 - ◆ 25 µm Ø, 1/2 cm spacing 0.5% coverage
- Crossed grids could yield ~mm xy position information
 - Identify source position of contamination

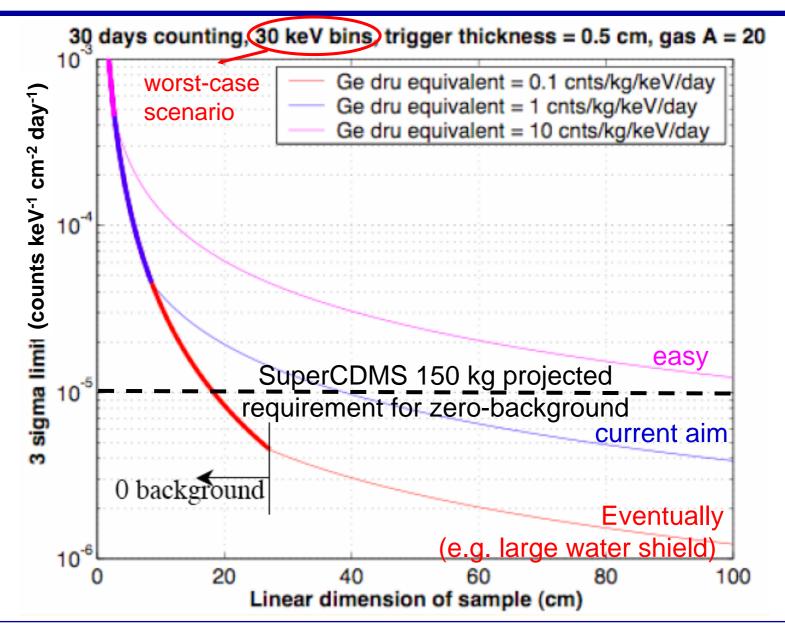

BetaCage

- Reject background interactions in bulk of gas by creating narrow (5 mm) "trigger region" near samples
 - Most gamma interactions in gas don't cause trigger
 - Reduces backgrounds in gas to 15% of unrejectable total due to gamma interactions in sample that eject electrons into trigger region (these look exactly like beta emission)

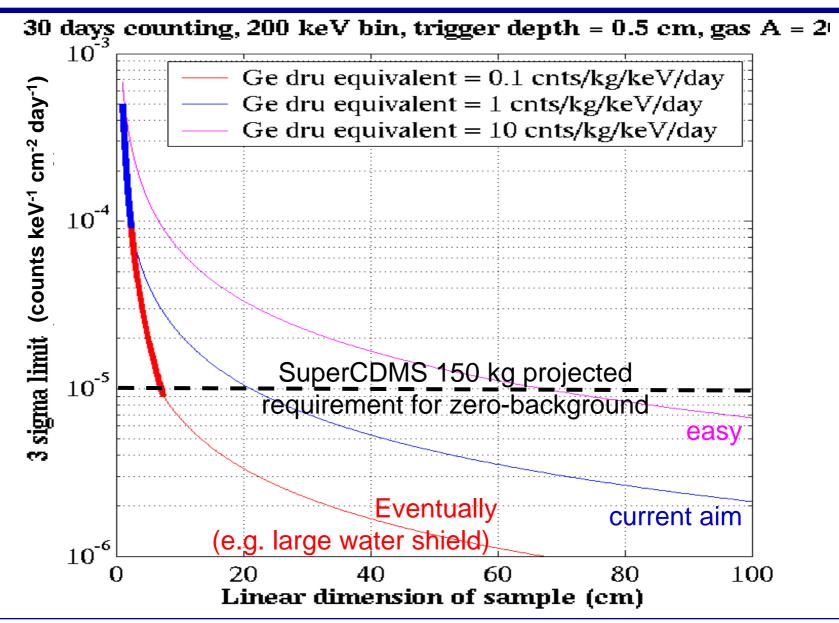
Results of Monte Carlo Simulation

• Gamma Background equivalent to 1 event/(kg keV day)

BetaCage LRT2006


Backgrounds

- Dominated by external gammas (3 x 10⁻⁵ keV⁻¹ cm⁻² day⁻¹)
 - Backgrounds of 1 event/ (kg keV day) straightforward with simple lead shield (including ancient lead liner)
 - Factor of 10 possible with better shield (e.g. clean water)
- Other:
 - ¹⁴C in quench gas (5 x 10⁻⁶ keV⁻¹ cm⁻² day⁻¹)
 - 5% methane, 10⁻¹⁶ g/g ¹⁴C/¹²C
 - Evaluating impact & alternatives (pure gas), may ultimately limit
 - Wires
 - Bulk: negligible (10⁻¹³ keV⁻¹ cm⁻² day⁻¹)
 - Surface: at 25 μm Ø, 0.5 cm spacing -> 200x smaller than sample


- May have to clean wires (expect 10⁻⁸ keV⁻¹ cm⁻² day⁻¹)

- Additional Construction: Plastics / Cu (negligible gammas), minimize number of resistors inside chamber (10⁻⁶ keV⁻¹ cm⁻² day⁻¹)
 - Operate at 1 atm no pressure vessel
 - Neon gas can be vented (rather than recovered) after counting

subtraction)

subtraction)

Additional Uses: α, β , X-rays

- Would be world's most sensitive screener for all nonpenetrating radiation
 - •More samples and higher efficiency than Ge detectors
- Low energy x-rays will provide a background for solar neutrino experiments and large-cryogen dark matter experiments
 - CLEAN program wants to screen to ~0.03 X-rays/cm²/day (amount produced by ⁴⁰K in PMT glass)
- Screen for ²¹⁰Pb via α and β emissions (negligible γ)
 - Potential applications to Si-chip industry
 - ²¹⁰Po (Pb daughter) is an α emitter that can cause single-event upset
 - •A need exists to screen for ²¹⁰Pb-²¹⁰Bi-²¹⁰Po at a rate of ~0.02 α /cm²/day
- Sensitivity might be more important than diagnostic capability
 - Majorana wants to count 10⁴ resistors (10 g, 50 cm² total) to sensitivity of ~0.02 /cm²/day

• Ge counting would require at least 10 kg (expensive!) and extended

Carbon or Tritium Dating

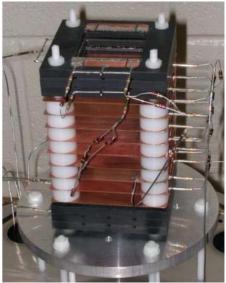
•Questions on efficacy of chemistry, processing of sample

- Introduction of contamination?
- Losses when converting sample to assayable form?
- •Method 1: Thin sample (solid or deposited onto planchet)
- •Method 2: Fill counter with sample made into CO_2 or CH_4 (methane) to be used as active gas
 - Removes advantage of background discrimination using trigger region
 - Assume assay in 1 m³ chamber with conservative background of event keV⁻¹ kg⁻¹ day⁻¹ (may expect 10x better)

	Background	3 o limit (1 day)	3σ limit (month)
$^{14}C/^{12}C$ in CO ₂	300 events/day	6 x 10 ⁻¹⁸	10 ⁻¹⁸
¹⁴ C/ ¹² C in CH ₄	100 events/day	4 x 10 ⁻¹⁸	6 x 10 ⁻¹⁹
³ H/H in CH ₄	100 events/day	2 x 10 ⁻²⁰	3 x 10 ⁻²¹

Potentially competitive with AMS

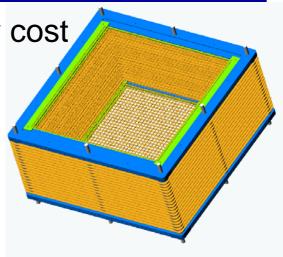
- Discussions at Boulder DUSEL conference and subsequent Minnesota Workshop on Synergies in Low-Background Ultra-Sensitive Radiation Techniques identified many user communities outside physics (cf. Wednesday's session here)
 - Tritium and ¹⁴C in groundwater
 - Radioactive environmental sampling (accidental release of radioisotopes)
 - Exposure assessment studies (¹⁴C as a tracer of particulate lung burden)
 - Use of short-lived isotopes for sediment dating
 - Tracers in uptake and transport (geomicrobiology)
 - Bioremediation studies
- These "other" users could use better beta-counting applications (¹⁴C, ³H, ⁴⁰K)

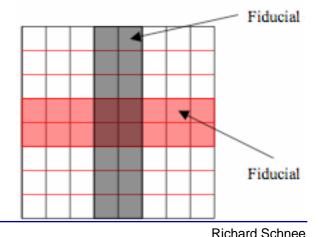

P. Cushman, L **Richard Schnee**

BetaCage Timeline

(many discussions)

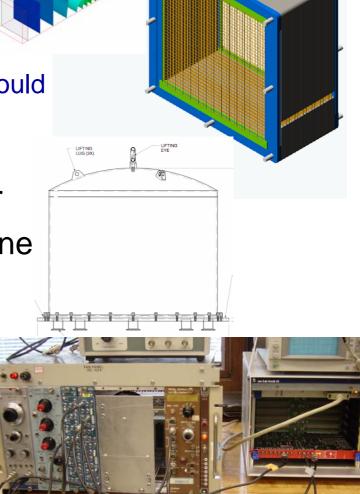
2002 T. Bowles, LANL, sparks discussions at Aspen workshop on underground physics

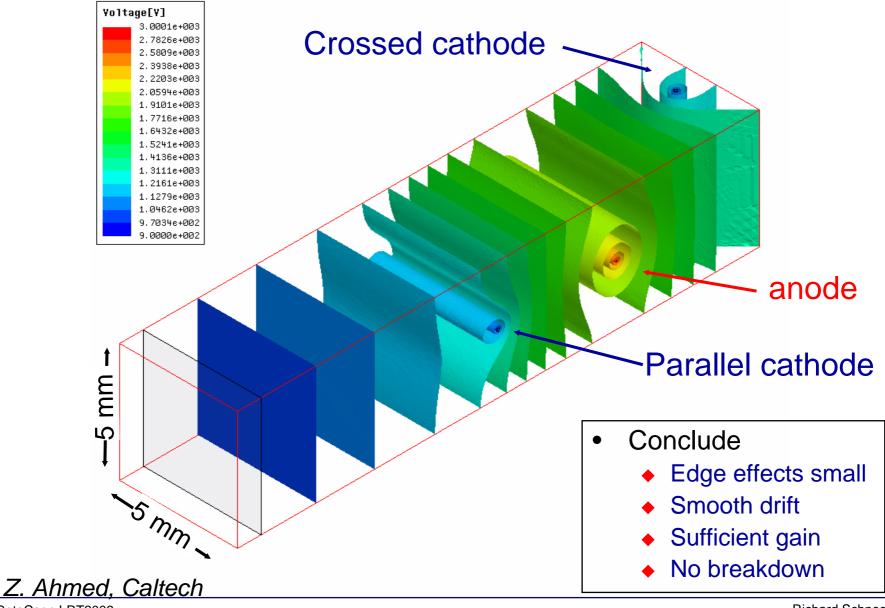

2003 T. Shutt & E. Dahl, Princeton, design, build, and operate4 cm x 4 cm x 10 cm prototype



2006 Our group (Case and Caltech) building
40 cm x 40 cm x 20 cm prototype (not radiopure),
proposing 100 cm x 100 cm x 50 cm detector
2007 We plan to run the prototype and hope to start construction on the full detector

BetaCage Prototype


- Purpose: demonstrate functionality at low cost
 - Basic MWPC construction
 - Beta identification via endpoint energy
 - Alpha identification
 - Some vetoing of gamma-induced events
- Cut costs by not being radiopure, using simplified simple DAQ
 - Aluminum vacuum chamber
 - Use argon gas not neon
 - Less expensive, simple gas handling
 - Also allows prototype to be half size of final instrument (since electron ranges in Ar are half that in Ne)
 - Use few channels (trigger, bulk, and veto regions



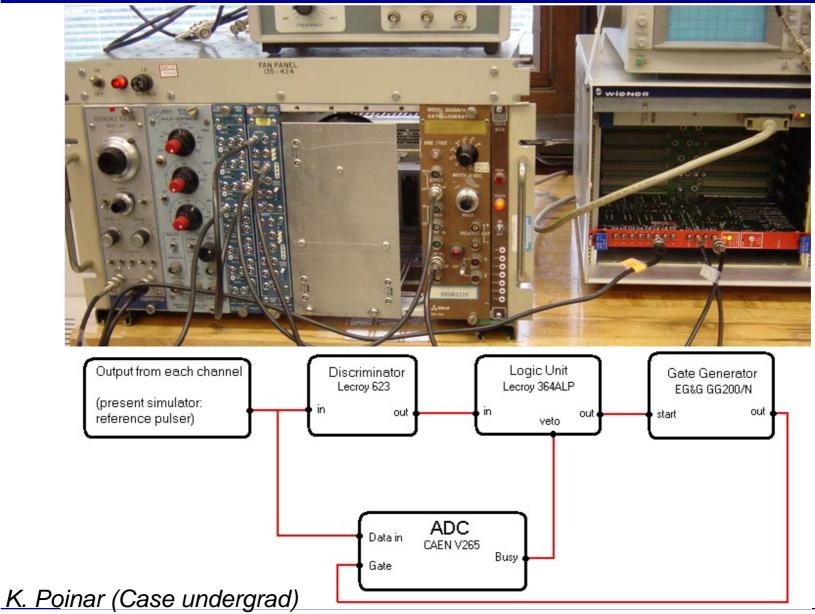
BetaCage Prototype Status

- Mechanical design done
- Electromagnetic simulations done
 - Wiring pad system and wires in hand.
 - Prototype frames and field shapers should arrive at Caltech today.
 - Test assembly this month at Caltech
- Vacuum chamber due mid-October
- DAQ and gas handling systems done
- HV system in progress
 - Almost all parts in hand
- Full assembly at Case Western in November

Maxwell-3D

BetaCage LRT2006

Richard Schnee


Vacuum Chamber Under Construction

BetaCage LRT2006

Richard Schnee

Prototype DAQ Ready

BetaCage LRT2006

Richard Schnee

BetaCage Proposal

- Switch to neon from argon, switch to all radiopure materials
 - Switch to neon requires doubling detector size
- Detector Development
 - Manpower: \$200k
 - Plastic chamber and MWPC assembly construction \$120k
 - Since not vacuum chamber, using Xe would be too expensive
- DAQ
 - \$50k for middle end system not full x-y
- Shield (1 dru) to be provided by Soudan Low-Background Counting Facility
 - Saves \$55k
 - Uses ultra-low-radioactivity Cu as an alternative to ancient Pb
- Possible Upgrades
 - Improved shielding to improve sensitivity
 - Copper vacuum chamber to allow Xe for identification of high-energy endpoints

Conclusions

- Proposed BetaCage: Large, clean, shielded, underground multiwire proportional chamber could be world's most sensitive screener for all non-penetrating radiation
- Needed for screening CDMS detectors' thin films for beta contaminants
 - Potentially broad applications to rare-event searches
- Expect virtually no background for alphas
 - Presumably dominated by U/Th in wires, radon/dust on sample surface
- Excellent sensitivity for carbon or tritium dating
- Prototype screener to demonstrate operation, energy reconstruction, some background rejection in 2007