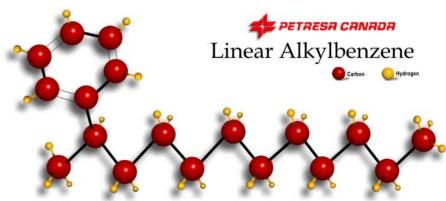
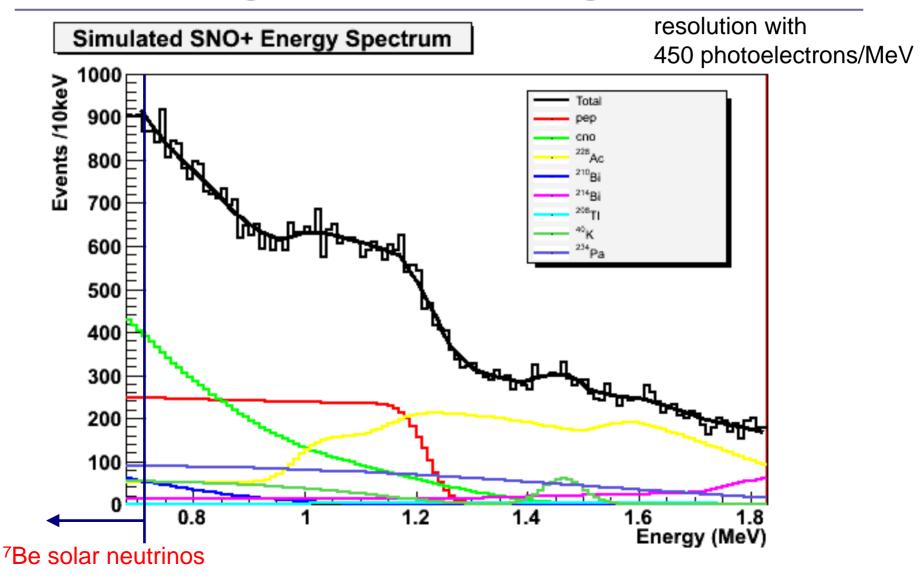
Scintillator Purification for SNO+

Mark Chen Queen's University


LRT2006 Oct 2, 2006

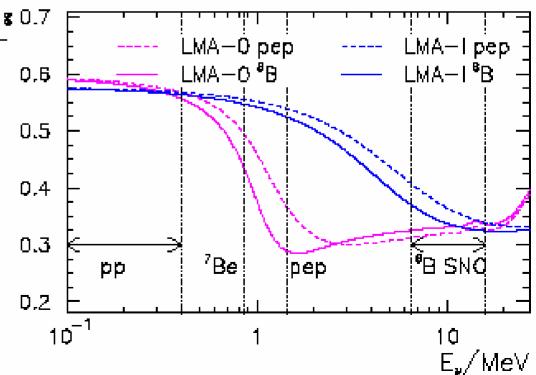


Fill SNO with Liquid Scintillator

- SNO plus liquid scintillator physics program
 - pep and CNO low energy solar neutrinos
 - tests the neutrino-matter interaction, sensitive to new physics
 - geo-neutrinos
 - 240 km baseline reactor oscillation confirmation
 - supernova neutrinos
 - double beta decay?!

SNO+ Signals and Backgrounds

pep Solar v Backgrounds

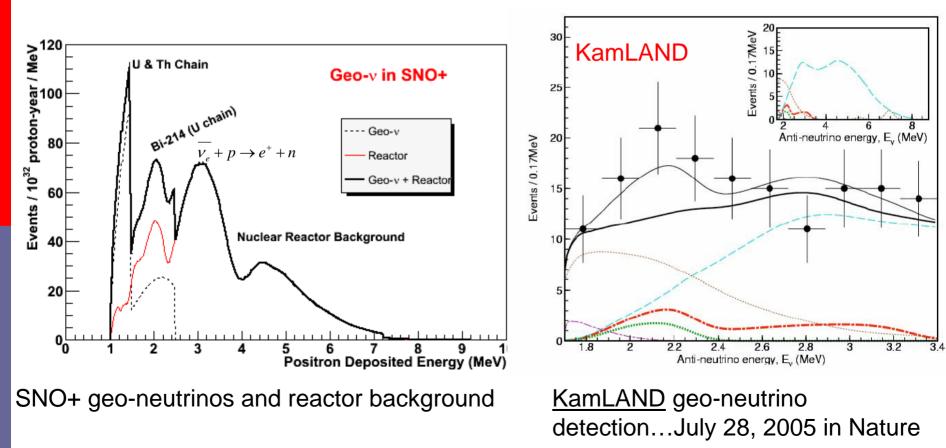

radiopurity requirements

- ⁴⁰K, ²¹⁰Bi (Rn daughter)
 - require KamLAND post-purification levels
- ⁸⁵Kr, ²¹⁰Po (seen in KamLAND) not a problem since *pep* signal is at higher energy than ⁷Be
- U, Th not a problem at KamLAND levels of scintillator purity
- ¹⁴C not a problem since *pep* signal is at higher energy
- In 11C not a problem because of depth

SNO+ Solar Neutrino Prospects

with backgrounds at KamLAND levels

- U, Th achieved
- ²¹⁰Pb and ⁴⁰K post-purification KamLAND targets
- □ could make a ∃[□] (stat+syst+SS
- ...a test of the : MSW in the mc
 confirmation of
 CNO measured

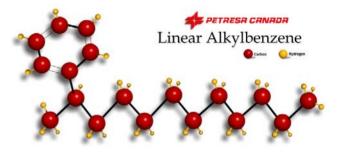


$v_e + p \rightarrow e^+ + n$

Geo-Neutrino Signal

antineutrino events :

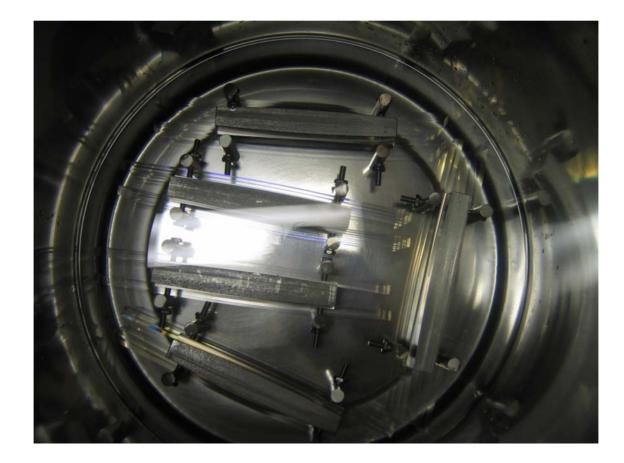
- KamLAND: 33 events per year (1000 tons CH₂) / 142 events reactor
- SNO+: 44 events per year (1000 tons CH₂) / 38 events reactor

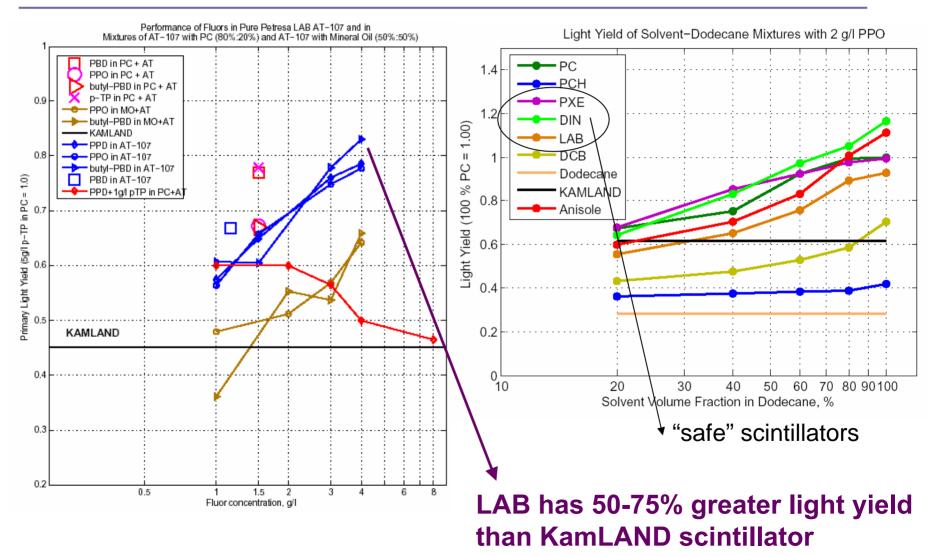

Geo-v Backgrounds

- ¹³C(α,n): plan to control this background by controlling Rn exposure in the scintillator
 - KamLAND has ²¹⁰Pb contamination due to radon exposure during scintillator handling
 - purification to remove ²¹⁰Pb will help KamLAND and SNO+
- accidental backgrounds: should be small
 like in KamLAND
- cosmogenic isotope production (e.g. ⁹Li)
 - tiny background in KamLAND
 - even lower in SNO+

SNO+ Liquid Scintillator

"new" liquid scintillator


- linear alkylbenzene
 - compatible with acrylic, undiluted
 - high light yield


- pure (light attenuation length in excess of 20 m at 420 nm)
- Iow cost
- high flash point (130°C) safe
- Iow toxicity safe
- smallest scattering of all scintillating solvents investigated
- density $\rho = 0.86 \text{ g/cm}^3$
- SNO+ light output (photoelectrons/MeV) will be approximately 3x that of KamLAND

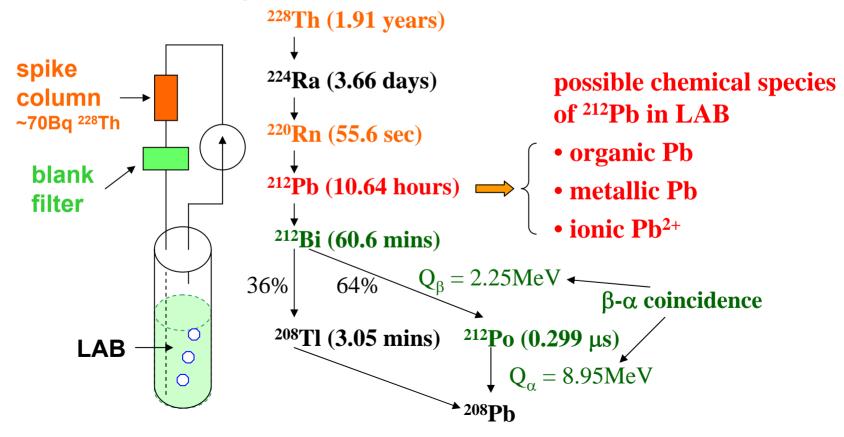
Scintillator-Acrylic Compatibility


 ASTM D543 "Standard Practices for Evaluating the Resistance of Plastics to Chemical Reagents"

LAB Light Yield

LAB Light Attenuation Length

Scintillator Purification Tests



Purification Spike Tests

²²⁰Rn from the ²²⁸Th spiked HZrO-silica gel column is bubbled into LAB, which decays to ²¹²Pb and counted by β - α coincidence liquid scintillation counting

Water Extraction

- □ spike LAB or water with ²¹²Pb
- mix them together, then let gravity separate the two phases
- ionic Pb should partition to the water phase
- □ sample LAB, count ²¹²Pb β - α
- tried also with 0.1 M nitric acid

Water Extraction Efficiency

exp-ID	spiked in	extracted by	extraction efficiency			
water extraction from spiked LAB						
PbSp2	24.6g LAB	19.6g UPW	<19.6%			
LAB extraction from spiked UPW						
PbSp4	20.5g UPW	8.1g LAB	<0.5%			
acid extraction from spiked LAB						
PbSp6-3	15.1g LAB	10g 0.1M HNO3	<15.5%			

conclusions:

1) Pb in the scintillator is probably not just ionic

2) ionic Pb doesn't go into scintillator

3) water or acid extraction is not so effective

Adsorption Column

- silica gel or alumina
- spike LAB, mix with above (or flow through column)
- Pb gets adsorbed by silica gel or alumina
- **count** ²¹²Pb β – α

Adsorption Purification Efficiency

exp-ID	spiked in	extracted by	extraction efficiency	K _d
ThRaSp6-1hr	12.1g LAB	0.1g Al2O3	97.4±0.2%	4536±507
ThRaSp6-2hr	11.8g LAB	0.12g Al2O3	97.8±0.2%	4411±429
ThRaSp7-1hr	11.9g LAB	0.1g silica gel	98.0±0.1%	5674±634
ThRaSp7-2hr	11.5g LAB	0.1g silica gel	95.1±0.3%	2211±247

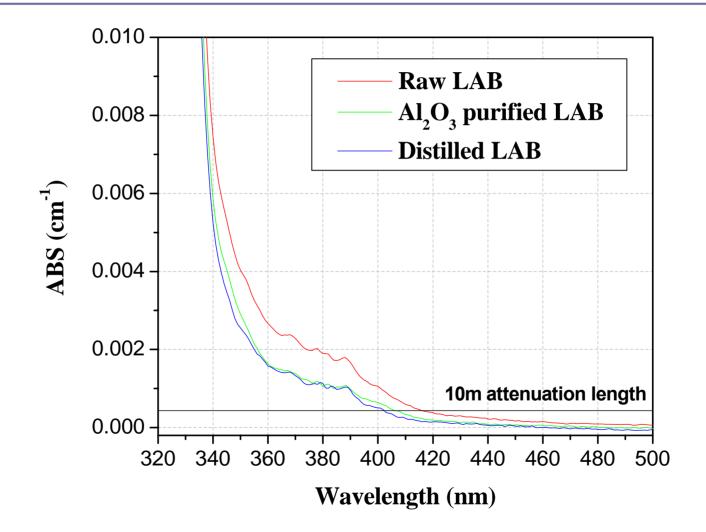
conclusions:

- 1) adsorption works
- 2) around 98% efficiency (far from optimized)
- 3) need to examine column regeneration (future work)

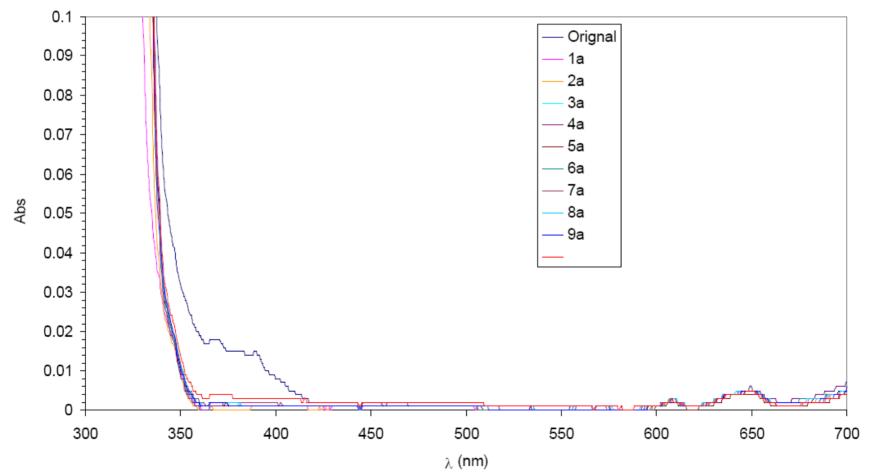
Vacuum Distillation

50 mL spiked LAB was distilled

70-90°C and 50 microns vacuum


note: boiling point at 1 atm is ~300°C

Distillation Efficiency


- >99.85% efficiency
- all ²¹²Pb removed, counted at blank levels
- stronger spike needed to measure the reduction factor
- □ single pass is surely better than 10³
- consistent with KamLAND observation of effectiveness of distillation at 10⁴ to 10⁵ level

Scintillator Optical Purification

More Optical Purification

dry column purification at BNL

Conclusions and Future Work

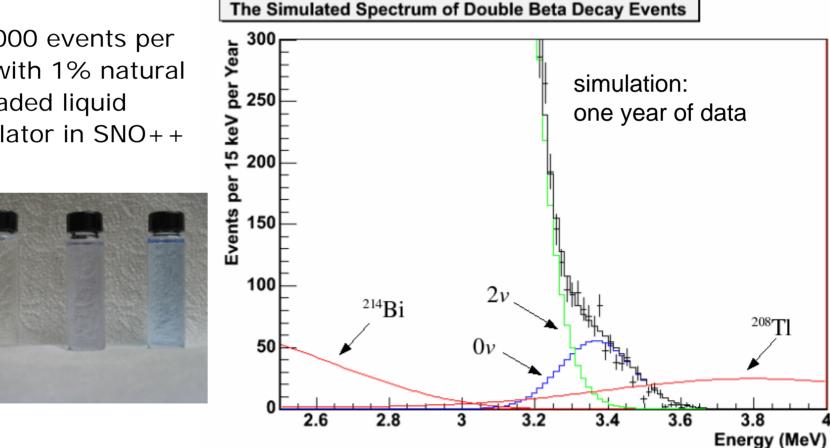
- vacuum distillation to be built for SNO+ scintillator purification
- Initial tests were successful in distilling LAB and PPO together (due to similar boiling points)
- Iarger spike tests are planned
- will continue to look at column purification and other techniques such as OSN (organic solvent nanofiltration)

SNO+ Collaboration

Queen's

M. Chen, M. Boulay, X. Dai, E. Guillian, A. Hallin, P. Harvey, C. Hearns, C. Kraus, C. Lan, A. McDonald, V. Novikov, S. Quirk, P. Skensved, A. Wright Carleton K. Graham Laurentian D. Hallman, C. Virtue **SNOLAB** B. Cleveland, F. Duncan, R. Ford, C. Jillings, Lawson Brookhaven National Lab D. Hahn, M. Yeh, A. Garnov Idaho State University K. Keeter, J. Popp, E. Tatar University of Pennsylvania students and G. Beier research associate University of Texas at Austin J. Klein, S. Seibert working on scintillator University of Sussex purification K. Zuber LIP Lisbon J. Maneira, S. Andringa, N. Barros **Technical University Munich**

L. Oberauer, F. v. Feilitzsch

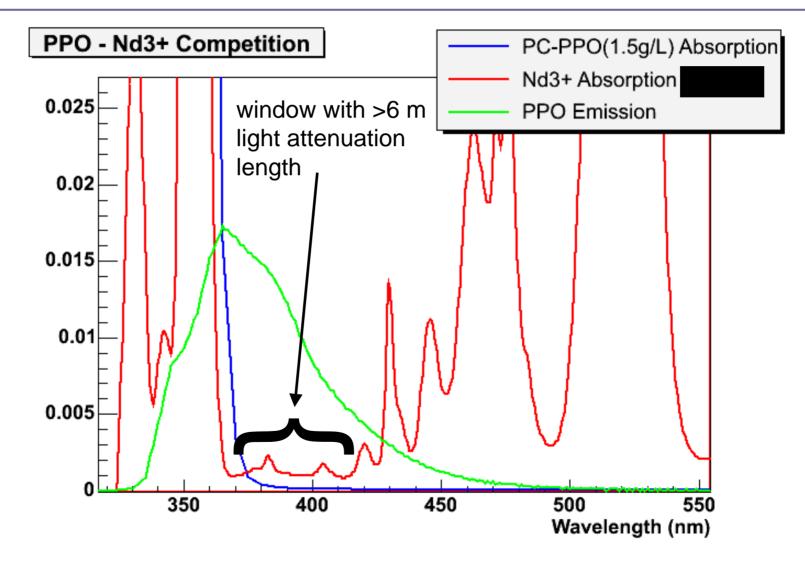

Double Beta Decay: SNO++

- SNO plus liquid scintillator plus double beta decay isotopes
- □ we are interested in ¹⁵⁰Nd
- enormous quantities and fast rate give high statistics and helps to compensate for poor energy resolution
- 1% natural Nd (or 0.1% loading of 56% enriched ¹⁵⁰Nd) is 560 kg of isotope
- Nd-carboxylate dissolved in scintillator

Klapdor-Kleingrothaus et al., Phys. Lett. B 586, 198, (2004)

Test $\langle m_{v} \rangle = 150 \text{ meV}$

0v: 1000 events per year with 1% natural Nd-loaded liquid scintillator in SNO++



maximum likelihood statistical test of the shape to determine 0v and 2v components...~240 units of $\Delta \chi^2$ significance after only 1 year!

SNO++ Double Beta Sensitivity

- insensitive to internal radon backgrounds
- **\square** insensitive to external backgrounds (2.6 MeV γ)
- internal Th is the main concern
 - and 2v background, of course
- □ for $m_v = 50 \text{ meV}$, $0v\beta\beta$ signal is ~50 events/yr in the upper-half of the peak, with S:B about 1:1
 - based upon KamLAND Th levels in scintillator and known 2v double beta decay backgrounds
- understanding energy response is critical
- Impotential is there for a double beta decay experiment

Nd-carboxylate in Pseudocumene

Nd Double Beta Decay Experiment

- we can make Nd-loaded LAB scintillator
- French AVLIS facility could enrich 100's of kg of ¹⁵⁰Nd
- Monte Carlo shows 0.1% Nd-loaded LAB scintillator has 400 photoelectrons/MeV light output (which is enough)

...can we purify Nd-loaded scintillator?