Copper Electroforming at the Canfranc Underground Laboratory

Status Report

Silvia Borjabad

Aussois (France), 1-4th October 2006

OUTLINE

- Motivation
- Copper Electroforming Process
 - Process Details and Key Elements
 - Equipment Improvements
 - Electroforming Set-up
- Starting...
- Electroformed copper parts
- Radiopurity measurements
- Summary and Prospects

- Copper is an attractive material for constructing ultra-lowbackground detector components.
- The electroforming process can be done underground, providing a potential way to eliminate cosmogenic activation.
- Additional chemical and electrolytic improvements can be combined resulting in extreme purity electroformed copper parts.
- Some copper pieces with complicated geometries are easier to fabricate by electroforming in steps.

Electroforming is a method of producing pieces by the deposition of a metal onto a mold (mandrel) which is subsequently removed

Process Parameters & Key Elements

- Mandrel turns during the whole process producing a homogeneous deposition
- Bath circulates with continuous filtration to remove oxides and precipitates
- Covered bath avoids air and dust contamination
- Plating is done over polished and cleaned stainless steel mandrels with the same shape of the relevant copper parts
- H₂SO₄ improves the electric conductivity
- HCI and Thiourea affect copper crystal nucleation and grain size

Constituents of the Electrolyte

Constituent	Concentration
CuSO ₄ . 5H ₂ O	188 g/l
H ₂ SO ₄	75 g/l
HCI	30 mg/l
Thiourea	3 mg/l

(Brodzinski et al.,A292 (1990) 337)

Equipment Improvements (I)

After its initial operation several upgrades to the design have been made:

> "Flutes" and a Plastic Barrier into the electrolitic bath

- Electrolyte circulation improvement
- Electric field homogeneization into the bath

Electronic Control System

- Engine control Section
 - Rotation Speed
 - Rotation Direction
- Bath polarity control Section
 - Direct Current Plating (DC)
 - Pulse reverse Current Plating (PR)

S. Borjabad. Aussois, October 2006

Equipment Improvements (II)

> Inert cover gas (N₂) in plating tank

To reduce oxide formation into the bath

> A new electronic facility to monitor bath parameters during the process

- Temperature sensor and pH electrode in the electrolyte
- Data acquisition during the whole electroforming process

Electroforming Set-Up

Starting...

Electroformed copper part obtained at 4 A dm⁻² with a rotation speed of 4 rev s⁻¹ by direct current plating

68 mm diametre 50 mm height

Dendritic Growth

Spiral dendritics at the bottom of the copper part

PROCESS PARAMETERS TUNING

Current Density

Rotation Speed

Rotation Direction

Rotation Speed Tuning

Electroformed copper parts obtained at different rotation speeds with a current density of 4 A dm⁻²

Current Density Tuning

Electroformed copper parts obtained at different current densities with a rotation speed of 2 rev s⁻¹

S. Borjabad. Aussois, October 2006

Spiral at the bottom

Rotation Direction Tuning

Electroformed copper parts obtained at 3 A dm⁻² and 2 rev s⁻¹ with different rotation direction process

Smooth surface No spiral at the bottom

Forward direction process

WITHOUT MACHINING II Both forward and reverse direction process (10 min each direction)

Tests for NaI crystal encapsulation

ANAIS experiment (Prototype III)

Design of a new encapsulation for Nal crystals

- Low background materials
- A perfect assembly

Electroformed copper hexagonal part

Electroformed copper part obtained at 3 A dm⁻² and 1 rev s⁻¹ with forward and reverse direction process using as mandrel the stainless steel Nal crystal container

Mandrel with copper deposit

Electroformed copper part

S. Borjabad. Aussois, October 2006

Electroformed copper parts

Electroformed copper cylindrical part

Crystal encapsulation assembly By manufacturing the required pieces - copper parts and quartz windows - and sealing them with epoxy (low background glue)

A preliminary scaled- down prototype of the Nal crystal encapsulation

Electroformed copper part obtained at 3 A dm⁻² and 2 rev s⁻¹ with forward direction process (1.5 mm thickness)

Radiopurity measurements of electroformed copper parts

The levels of radiopurity in electroformed copper parts are being measured with a HPGe detector (1Kg Ge) at the Canfranc Underground Laboratory (LSC), in Spain.

Radionuclide Units (mBq/kg) An example of a standard- electroformed 212_{Ph} Th series \leq 16 copper part measurement (commercial chemicals & at sea level) is presented below: 228_{AC} \leq 25 234Th \leq 32 U series 234Pa \leq 90 Copper mass: 161 g 226_{Ra} \leq 24 Measuring time: 5 d 214Ph \leq 3 214_{Ri} \leq 6 235[] ≤ **1.4** 137_{CS} \leq 7 40_K \leq 90 60Co \leq 7 56CO \leq 3 57_{Co} \leq 8 Copper part into a **Copper around the** 58Co Marinelli container **HPGe** detector \leq 5

S. Borjabad. Aussois, October 2006

SUMMARY

- Copper electroforming combines high purity with cosmogenics elimination.
- Is being used in a current generation of research detectors.
- Electroformed copper parts with smooth surface can be manufactured by means of the tuning of process parameters
- Copper parts with different geometry (hexagonal, cylindrical) can be achieved by easy modifications.

PROSPECTS

- Electroforming in steps: electroformed Cu parts for cryostats.
- Electroformed copper part for PMTs encapsulation (ANAIS experiment).
- Chemical & electrolitic improvements: CuSO₄ purified by recrystallization, high- purity acids and anodes, CoSO₄ and BaSO₄ to reduce Co and Ra isotopes.
- This facility will be installed at the new (enlarged) Canfranc Underground Laboratory as soon as the clean room is ready.