

SNOLAB Science, Design and Status

Richard Ford (SNOLAB, Sudbury) LRT2006 Workshop at Frejus Laboratory, October 1st 2006, Aussios, France http://www.snolab.ca

Deep Underground Laboratories

SNOLAB - Mining for Knowledge

SNOLAB - Mining for Knowledge

SNOLAB is funded through Canada Foundation for Innovation (CFI)

SNOLAB Science

Why go underground?

- Low cosmic ray background environment to see rare or low signal effects.
- Neutrino research

- Solar Neutrinos

- Cosmic ray neutrinos
- Geo-neutrinos
- Reactor neutrinos
- Supernova neutrinos
- Double beta decay

Cosmology

- Dark matter searches
- Cosmic ray muons
- Low background counting
- High purity materials production
- Earth science research (seismology, geology, ...)
- Other interdisciplinary research or utility...(biology?)

Solar Neutrinos

SNO+ (SNO reloaded ... with scintillator!)

- Best fit to solar neutrino fluxes suggest MSW oscillations occur (LMA solution), but no direct evidence is observed (day/night effect or spectral – distortion).
- Vacuum/matter transition
- Non-standard interactions
- Mass-varying neutrinos

Miranda, Tórtola, Valle, hep-ph/0406280

pep solar neutrinos are at the right energy to test for new physics
Can only be done at SNOLAB due to low ¹¹C cosmogenic background

Barger, Huber, Marfatia, hep-ph/0502196

SNOLAB Science

Why go underground?

- Low cosmic ray background environment to see rare or low signal effects.
- Neutrino research

- Solar Neutrinos

- Cosmic ray neutrinos
- Geo-neutrinos
- Reactor neutrinos
- Supernova neutrinos
- Double beta decay

Cosmology

- Dark matter searches
- Cosmic ray muons
- Low background counting
- High purity materials production
- Earth science research
- Other interdisciplinary research or utility...

Geo-Neutrinos in SNO+

Can we detect the antineutrinos produced by natural radioactivity in the Earth?

SNOLAB Science

Why go underground?

- Low cosmic ray background environment to see rare or low signal effects.
- Neutrino research
- Solar Neutrinos
- Cosmic ray neutrinos
- Geo-neutrinos
- Reactor neutrinos
- Supernova neutrinos
- Double beta decay

Cosmology

- Dark matter searches
- Cosmic ray muons
- Low background counting
- High purity materials production
- Earth science research
- Other interdisciplinary research or utility...

Double beta decay

SNOLAB Science

Why go underground?

- Low cosmic ray background environment to see rare or low signal effects.
- Neutrino research
- Solar Neutrinos
- Cosmic ray neutrinos
- Geo-neutrinos
- Reactor neutrinos
- Supernova neutrinos
- Double beta decay

Cosmology

- Dark matter searches
- Cosmic ray muons
- Low background counting
- High purity materials production
- Earth science research
- Other interdisciplinary research or utility...

We live in a dark universe...

We live in a dark universe...

PICASSO

- High spin-dependent neutralino cross-section on ¹⁹F
- Super-heated halocarbon droplets "frozen" in gel
- Nuclear recoil deposits heat, causing droplet to evaporate and "pop", which is recorded by piezo-electric sensors

SuperCDMS

- Spin independent recoil on Ge crystal detectors
- Detect ionization yield (FET) and recoil energy from phonons (SQUID array)

DEAP

- Spin independent scattering on ⁴⁰Ar.
- High scintillation yield
- \bullet Descrimination of γ/β background using scintillation time signature
- Ar is dense, cheap and cryostat is scalable

Existing SNO Facility

Existing SNO Facility

Existing SNO Facility

Existing SNO Facility

SNOLAB: Phase 1

Chem Lab

Phase I

Ultra-pure Water plant

Existing SNO Facility

Utility Area

- Sewage plant
- Generator set
- Fire water bladder
- New chiller (320 tons)

Relocate

-Lab Entry

-Personnel Facilities

SNOLAB: Phase 2

Rectangular Hall

Ladder Labs

Ladder lab outfitted

Cryopit

Utility Drift Staging Area Example cryo-detector: CLEAN Photons Neon, atom 25 K WIMP 300 K Cryopit 50' dia 50' (Shoulder) 65' (Back)

Cleanliness

Ventillation: Pressure Zones

Personnel and Material Handling

CREUSER POUR TROUVER... L'EXCELLENC

Backgrounds at SNOLAB

1000 2000 3000 4000 5000 6000 7000 8000 Depth, meters water equivalent

Status: Excavation - Last Year

Status: Excavation - Today

Ladder Labs

Rectangular Hall

FIS

Utility Areas and Ventila Ventilation "Cross Over"

SNOLAB Workshop V, 21 August 2006

Surface Facilities

CREUSER POUR TROUVER... L'EXCELLENCE

- ➤ 34000 sqft of space
- 4600 sqft class 1000 clean room
 (or better) with low background room
 Backup generator power and UPS
 Nitrogen boil-off gas piped to each lab (Rn free)
- Materials handling for underground
- Building engineered for seismic stability
- Climate controled IT room
- + Offsite facilities at Laurentian U for hot source work

Surface Facilities - Main Floor

Developing the Science Program

> The SNOLAB director David Sinclair will set the science program in consultation with an international experimental advisory committee.

EAC

Chair: Barry Barish Secretary: Andrew Hime

Baha Balantekin (US) Cliff Burgess (CAN) Ken Ragan (CAN) John Martin (CAN) Kate Scholberg (US) Takaaki Kajita (Japan) David Wark (UK)

Scientific Merit

Infrastructure Needs

Progress on R&D Technical Feasibility Safety Funding & Schedule Participation & Management

• The science program is being developed through a series of participant workshops at the SNOLAB site

• The Vth workshop was August 21-22 2006 (see http://www.snolab.ca)

Developing the science program (cont.)

- Users submit letters of interest (LOI) to locate at SNOLAB
- The EAC will provide a letter of response (LOR) questions or endorsement
- Small experiments or small spaces for prototyping can likely be arranged with very little fuss
- 18 LOI's have been received (20 expressed interest)
- The EAC has currently endosed 9 projects, of which 6 have Canadian leadership roles or significant Canadian participation:
 - Solar neutrinos, geo/reactor neutrinos, SN SNO+ CLEAN Solar neutrinos, dark matter SuperCDMS Dark matter PICASSO Dark matter DEAP Dark matter ZEPLIN Dark matter EXO Double beta decay Majorana Double beta decay Supernova HALO All these group need collaborators! – come to the workshops!

Schedule

Surface facility

- Ground breaking summer 2004
- Completed and occupied August 2005
- **Underground laboratory**
 - Excavation started November 2004
- Phase I excavation now 76% complete (Sept 2006)
- Phase I excavation to be completed spring 2007
- > Outfitting to start Jan 2007, through early 2008
- > Decision from CFI on phase II Jan 2007
- Outfitting phased so early space available in 2007

SNOLAB - Mining for Knowledge ...

The End

For more information: http://www.snolab.ca

	Experimental Space		Length	Width	Height	Area
			(ft)	(ft)	Shoulder/Back	(sq ft)
Existing	SNO Cavern	Cavern	70(dia)		85'/100'	3848
		Utility Drift	187	23		4300
		Control Room	57	20		1140
	South Drift	Drift	106	17	10'/16'	1802
Phase I	Ladder Labs	Drift C1	105	20	12'/19'	2100
		Drift C2	75	25	17'/25'	1875
		Drift B&D	360	15	10'/15'	5400
	Rectangular Hall	Hall	60	50	50'/65'	3000
		Utility Drift	115	20	10'/17'	2300
		Staging Area	45	16	10'/15'	720
		Control Room	62	18	10'/16'	992
Phase II	Cryopit	Cavern	50(dia)		50'/65'	1963
		Utility Drift	141	20	10'/17'	2820
		Staging Area	66	16	10'/15'	1056
		Control Room	64	16	10'/15'	1024
					Existing SNO	11090
					Phase I	27477
					Phase II	34340

Experiments with interest to site at SNOLAB:

SNO	Solar Neutrinos		
SNO + & SNO ++	Solar Neutrinos & Double Beta Decay		
Lithium Detector	Solar Neutrinos		
CLEAN	Solar Neutrinos & Dark Matter		
Majorana	Double Beta Decay		
GerDA	Double Beta Decay		
EXO	Double Beta Decay		
COBRA	Double Beta Decay		
SuperCDMS	Dark Matter		
ZEPLIN	Dark Matter		
XENON	Dark Matter		
DEAP	Dark Matter		
PICASSO	Dark Matter		
COUPP	Dark Matter		
DRIFT	Dark Matter		
Noble Liquid Tracking Detectors	Solar Neutrinos		
HALO	Supernovae Neutrinos		
LENA	Proton Decay, Solar Neutrinos, Supernovae Neutrinos		
NOSTOS	Neutrino Oscillations (θ_{13})		
TRIGA	Neutron-Antineutron Oscillations		

- 1 large experiment in the Rectangular Hall
 - (15 m scale)
- 1 large experiment in the SNO Cavern
 - (22 m scale)
- ~2 medium scale experiments in the ladder labs.
 - (4-6 m scale)
- Several smaller prototyping activities
 - (1-2 m scale)

The Lab and The User

- The Experiment
 - Address safety and regulatory issues.
 - E.G. Fire suppression, Electrical, ...
 - Experiment specific technical support and infrastructure.
 - E.G. Cryofridges, UPSs, Lifting devices, ...
 - Compatibility with other experiments.
 - "Birth to Grave" responsibility for apparatus and materials on site.
 - E.G. removal of equipment and disposal of hazardous materials.

- SNOLAB
 - Basic Lab infrastructure including Supervision, Maintenance, Cleaning
 - Material Transportation
 - Power/Cooling/Water
 - Surface Lab, Office, Meeting Space, Change rooms
 - Some Design
 - Some Machining (Surface and UG)
 - Assistance with Regulatory Issues
 - Aspects of technical support including IT, Electrical, Mechanical, Chemistry.

Laboratory Infrastructure

- · Computing & Network
- Space Allocation
- Power (Normal, Generator, UPS)
- Cooling (Air, Chilled Water)
- Fire Alarming and Suppression
- Slow Controls
- Radon Free Air? (UG and Surface)

- LN2
- Water/Dewatering
- Technical Support (IT, Electrical, Mechanical/Maint, Cryogens?, Electronics?)
- Clean Rooms
- Civil Work
- Surface Space
- Offsite Hot Lab

Fire Suppression

Power

6800 LEVEL 13.8KV FEEDER

Water Supply

Water Discharge

Laboratory Cooling

- 100,000 ACFM available for cooling.
- 320 tons (1100 kW) nominal
 - Including the SNO experiment, ~600 kW available for experiments
- Chilled water to circulation loop to lab.
- Cooling provided to:
 - Air Handler Units
 - Secondary cooling coils in HVAC
 - Existing SNO water systems.
 - Future Experimental Processes.
- Initial Power infrastructure will not allow full chiller capacity.
 - Will be upgraded as the experimental loads increase.

Chiller

CDMS Collab Meeting 15 Oct 2005