

1

#### CANDLES for the study of <sup>48</sup>Ca double beta decay and low radioactivity CaF<sub>2</sub> crystals

T. Kishimoto Osaka Univ.

LRT2006 Oct 1-4, Aussosis - France

### Why <sup>48</sup>Ca



- Highest Q value (4.27 MeV)
  - next largest <sup>150</sup>Nd (3.3 MeV)
  - Large phase space factor
  - Little BG (natural radioactivity  $\gamma$ : 2.6 MeV,  $\beta$ : 3.3 MeV)
- Natural abundance: 0.187%
  - Isotope separation: expensive (no Gas)
  - Early studies (recent studies use separated isotope)
- Next generation

$$-M_{v} \sim T^{-1/2} \sim M^{-2}$$
 (no BG)

 $\sim$  M<sup>-4</sup> (BG limited)

LRT2006 Oct 1-4, Ca (no BG) Aussosis - France

$$\left< m_{\nu} \right> < 7.2 \sim 44.7 \, {\rm eV} \ (90 \ {\rm C.L.})$$
 NPA 730 '04, 215 2

# How to sense $m_v = 10^{-(1-2)} eV$

- Big detector
  - Huge amount of materials
- Low radioactive background
  - Active shield
  - Passive shield
  - Low background material
  - BG rejection by signal processing
- High resolution
  - Backgrounds from  $2\nu\beta\beta$  decay

#### • **CANDLES** is our solution

LRT2006 Oct 1-4, Aussosis - France Candles

### CANDLES



<u>CA</u>lcium fluoride for studies of <u>N</u>eutrino and <u>D</u>ark matries by <u>Low Energy Spectrometer</u>



### CaF<sub>2</sub> crystal



- Big detector
  - Best optical lens
  - Long attenuation length
    - 10m (catalog value for visible light)
    - >1m (our measurement for scintillation light)
- CANDLES IV
  - 15x15x15 cm<sup>3</sup> x 600 (6t)
  - Increase the number of nuclei (<sup>48</sup>Ca)

6.4 g (ELE VI) ~6(kg)

8.1 × 10  $^{22}$  atoms  $10^{26}$  atoms  $10^{26}$  atoms Aussosis - France

#### CANDLES I





Aussosis - France





LRT2006 Oct 1-4, Aussosis - France 8

#### Background @ Q value region

- No natural BG @ ~4 MeV
  - Maximum energy
    - $\gamma \sim 2.6 \text{ MeV}, \beta \sim 3.3 \text{ MeV}, \alpha \sim 2.5 \text{ MeV}(\text{quench} \sim 0.3)$
  - Successive decay of  $\alpha \beta \gamma$ 
    - ~1µsec decay time



**0vββ** Window

2νββ

Candles





LRT2006 Oct 1-4, 500MHz FADC (under preparation)  $\dots \Delta T > 5ns$ ; ~1% Aussosis - France 10



# Development of High Purity Cardles



#### Radioactivities in CaF<sub>2</sub>



Candles

- $\beta \alpha$ ,  $\alpha \alpha$  delayed coincidence
- @ Oto Cosmo observatory



Aussosis - rance

# Energy resolution of CaF<sub>2</sub>



- Energy Resolution  $\Delta E \sim \frac{1}{\sqrt{N_n}}$
- Scintillation light
  - $-\sim 0.5$  of CaF<sub>2</sub>(Eu) (quart window PMT)
  - peak emission U.V. (285 nm)
- Increase # of photons
  - Wavelength shifter
  - UV sisible light



Aussosis - France





Aussosis - France

### CANDLES III

- Construction almost completed @ Osaka Univçandles
- CaF<sub>2</sub>(pure)
  - $-60 \times 10^3 \text{ cm}^3$ ; 191 kg
- Liquid scintillator
  - <sup>ø</sup>1m×<sup>h</sup>1m acrylic contaimer ™
- Purification system
- H<sub>2</sub>O Buffer: passive shield
  - *−* <sup>*\$*</sup>2800×<sup>*h*</sup>2600
  - safety regulation
- PMTs
  - 15" PMT (×8) : R2018
  - 13" PMT (×32) :R8055



LRT2006 Oct 1-4, Aussosis - France



#### CANDLES III (prototype)



LRT2006 Oct 1-4, Aussosis - France

Candles

*h* 2.6 m

#### CANDLES III

Photomultiplier Tube(13inch)



Inside View

E.P.

40 PMTs Version And 60 PMTs Version . . . Funded

Tank for Liquid Scintillator (Acrylic Case)

LRT2006 Oct 1-4, Aussosis - France



LS tank

• 4 CaF<sub>2</sub> modules installed









### $CaF_2$ module



• CaF<sub>2</sub> + conversion phase + acrylic case



#### half filled



filled

Index 1.44@586nm (CaF<sub>2</sub>)

Index 1.46@586nm (Mineral Oil)

LRT2006 Oct 1-4, Aussosis - France

#### CANDLES III(U.G.) san-chika



Candles

- CaF<sub>2</sub>(pure)
  - $10^3$  cm<sup>3</sup>  $\times$  96 crystals; 305 kg
- Liquid scintillator
  - two phase system
  - Purification system
- H<sub>2</sub>O Buffer
  - passive shield
- PMTs
  - 17" PMT (×14) : R7250
  - 13" PMT (×56) : R8055
  - mirror type reflector
- photon trans. simulation  $\Rightarrow$  energy res. ~3.5 % @  $Q_{\beta\beta}$
- Kamioka underground lab.

Reflector LS CaF<sub>2</sub> pure water w.l. shifter

### CANDLES IV





 $15 \times 15 \times 15 \text{ cm}^3 \text{ CaF}_2$ (600 cubes) 6.4 t liquid scintillator Vessel (<sup>48</sup>Ca) 6.4 kg

BG (~3μBq/kg Th)

 Needs R&D
 Current best
 ~6μBq/kg

 Energy resolution

 Photo coverage

#### Mile stone

• ELEGANTS VI

– running with new BG rejection (2v)

- CANDLES I, II
- CANDLES III
  - 10cm<sup>3</sup> cube (100 crystals) ~0.5 eV
  - BG of CaF<sub>2</sub> ~30  $\mu$ Bq/kg
- CANDLES III(UG)
- CANDLES IV
  - 15cm<sup>3</sup> cube (600 crystals) 6t
  - BG of CaF\_2 ~3  $\mu\text{Bq/kg}$  for 0.1 eV

LRT2006 Oct 1-4, Kamioka

Aussosis - France



Achieved

Kamioka

#### Future



- CANDLES V to sense 30 meV region
  - $-\sim 100$  ton CaF2
  - Can be installed in
    - Kamland
    - SNO

Vessel and PMT's

- Isotope separation
  - Available: <sup>76</sup>Ge, <sup>100</sup>Mo, <sup>128</sup>Te
  - exception: <sup>48</sup>Ca, <sup>150</sup>Nd (feasible?)
    - R&D

- Crown ether, centrifuge, others

LRT2006 Oct 1-9, If 2%: 10 meV region Aussosis - France