Low background counting techniques - status and outlook

<u>Dr</u> Matthias Laubenstein Laboratori Nazionali del Gran Sasso ITALY

> Low Radioactivity Techniques 2006 Aussois (France) October 1st — 4th, 2006

Activities of the Deep Underground Laboratories in ILIAS

Activity

J1: LBT-DUS Low Background Techniques for Deep Underground Science

Joint R&D for the improvement of the strengthening of the low background facilities and know-how of the UG labs

A1 : TARI-DUSL

Transnational Access to the EU Deep Underground Science Laboratories Support for the transnational access of research teams to the EU underground labs with priority to researchers from less favoured countries

N2 : EUNet-DUSL

European Network of the Deep Underground Science Laboratories

Coordination and networking to support the management of common issues relevant in the operation of the UG Labs

J1 : low background techniques for deep underground science

Motivations :

Extremely low-level background techniques and instrumentation are an essential requirement for a number of topics in astroparticle physics, e.g.:

- \clubsuit search for ββ decay
- ✤ search for dark matter
- ✤ detection of low-energy neutrinos (solar, geo)

Fundamental topics common to most experiments are:

- selection of radiopure materials
- techniques for shielding against environmental backgrounds
- purification techniques

This is the main motivation to carry on a Joint Research Activity on Low Background Techniques coordinated by the UG Labs within ILIAS

Key R&D topics

development and strengthening of the ultra low background facilities and instrumentation in the UG labs

measurement and monitoring of the background components in the underground Labs – Development of background simulation codes

✤ application of low background techniques to interdisciplinary fields

✤ R&D on radiopurity of materials and purification techniques.

EU Support:

✤ personnel

travel money

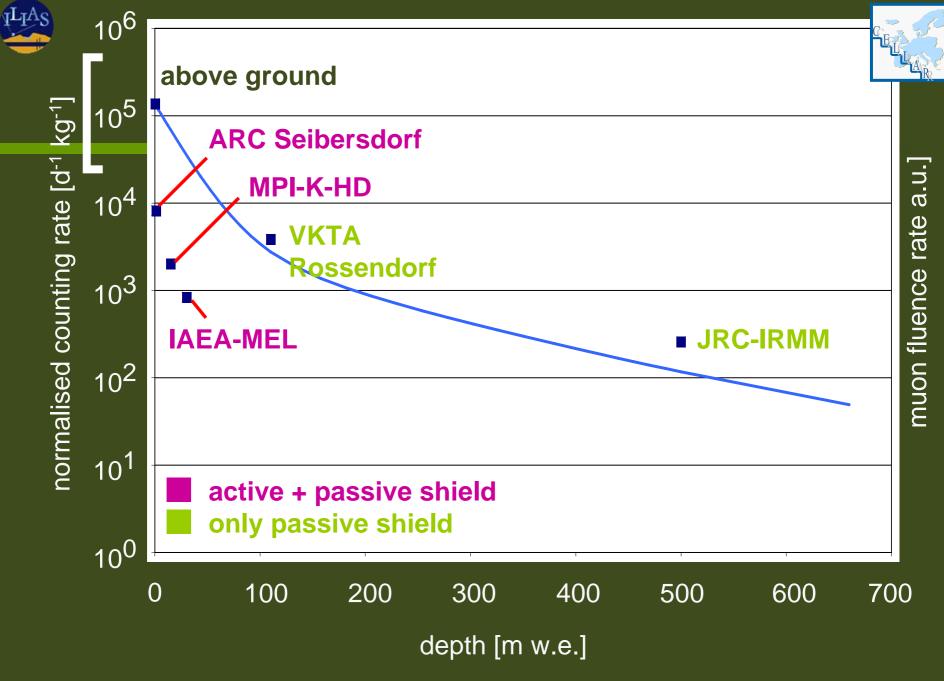
✤ contribution to equipment and consumables for selected specific activities

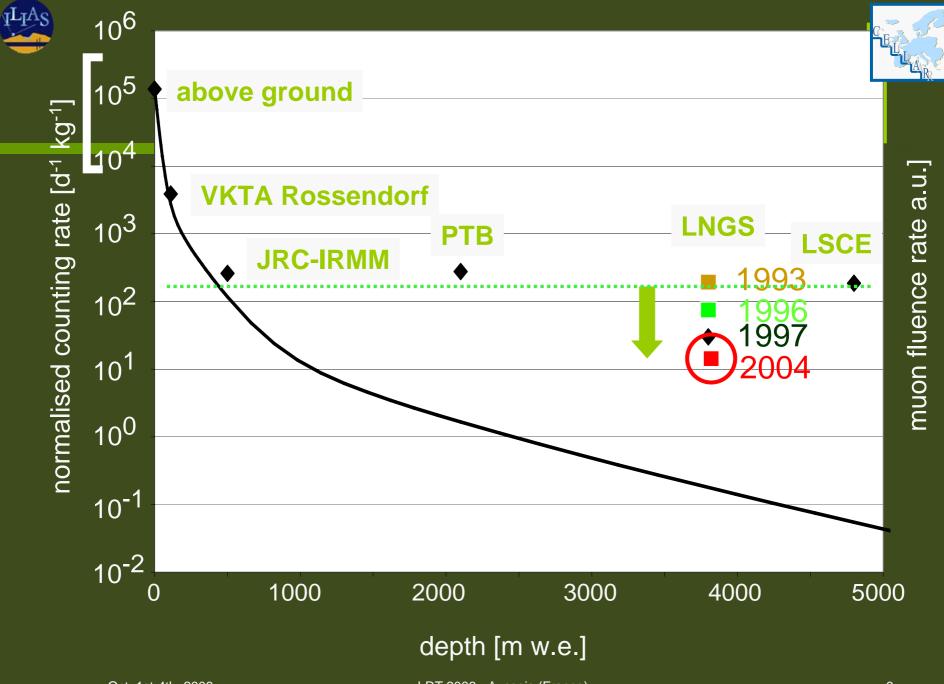
Comparison of radioassay techniques

Ge-spectroscopy Rn emanation assay neutron activation analysis liquid scintillation counting mass spectrometry (ICP-MS; AMS) AES + AAS analysis X-Ray Fluorescence alpha spectroscopy

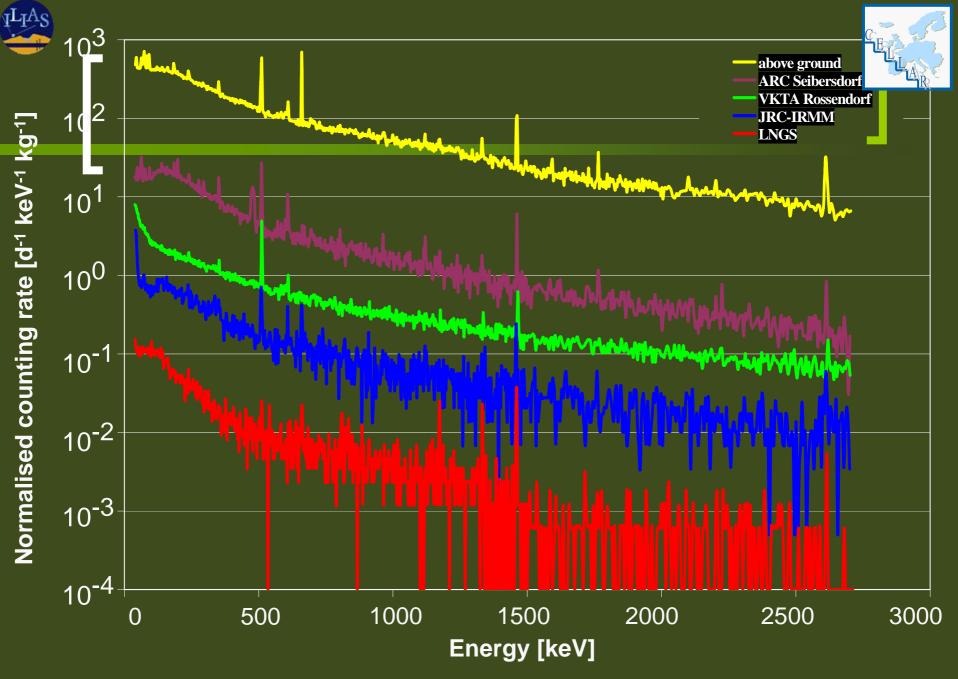
 γ emitting nuclides ²²⁶Ra, ²²⁸Th primordial parents a,β emitting nuclides primordial parents primordial parents primordial parents a emitting nuclides

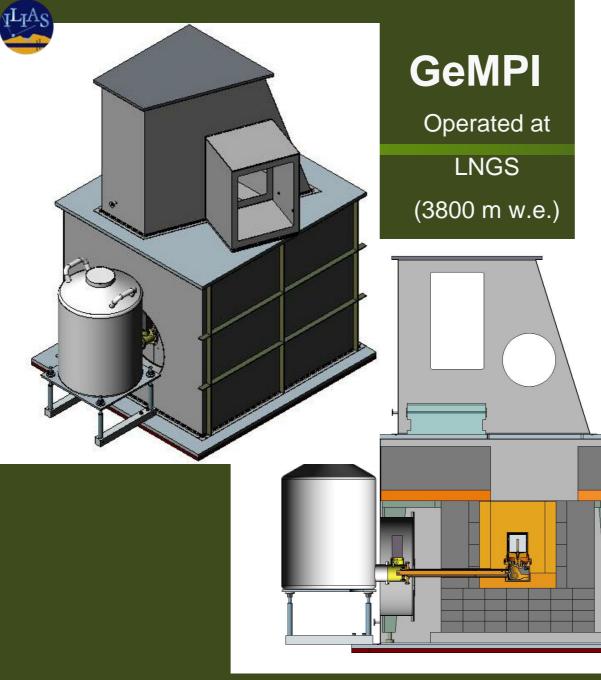
difficult to compare because each method has its special application

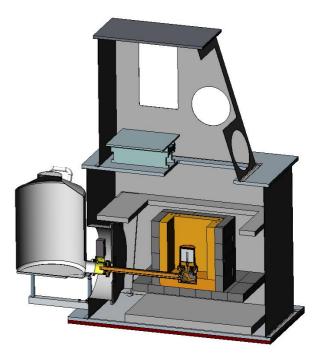

Sensitivities


method	suited for	sensitivity for U/Th
Ge-spectroscopy*	γ emitting nuclides	10-100 µBq/kg
Rn emanation assay	²²⁶ Ra, ²²⁸ Th	0.1-10 µBq/kg
neutron activation analysis	primordial parents	0.01 µBq/kg
liquid scintillation counting	a,β emitting nuclides	1 mBq/kg
mass spectrometry (ICP-MS; AMS)	primordial parents	1-100 µBq/kg
AES and AAS analysis	primordial parents	1-1000 µBq/kg
X-Ray Fluorescence	primordial parents	10 mBq/kg
alpha spectroscopy	a emitting nuclides	1 mBq/kg

* Needs counting times from several weeks to several months



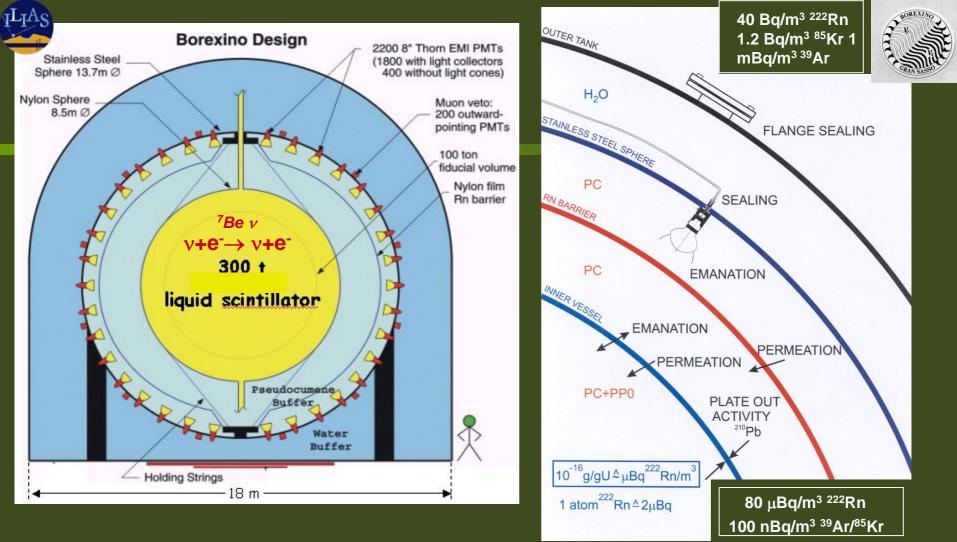

Germanium spectroscopy



LRT 2006 - Aussois (France)

G. Heusser

effective volume of sample chamber ~ 15 I


(e.g. 125 kg Cu or 157 kg Pb)

-

High purity copper directly placed underground after electrolysis

Rn emanation assay and gas proportional counting

- develop methods to detect noble gas radionuclides $\,$ and ^{226}Ra (via $^{222}Rn)$ at the μBq level
- screen relevant materials and subsystems at that level
- provide nitrogen for scint. purification at the req. level

²²²Rn (²²⁶Ra) assay with proportional counting

Ray Davis Jr. type miniature counter

efficiency for internal counting (> 15 keV): 148 % background: (0.2 - 2) counts per day \Rightarrow about **30** μ **Bq** ²²²Rn easily detectable (monitoring)

Extract Rn from large quantities of water, nitrogen and as an emanation signal of subsystems of BOREXINO

H₂O: 1 mBq Ra/m³ **Reached sensitivities:** surface

Oct. 1st-4th, 2006

0.5 μBq/m²

emanation

composition of background for Fe cathode counters in Pb/Cu shield at LNGS

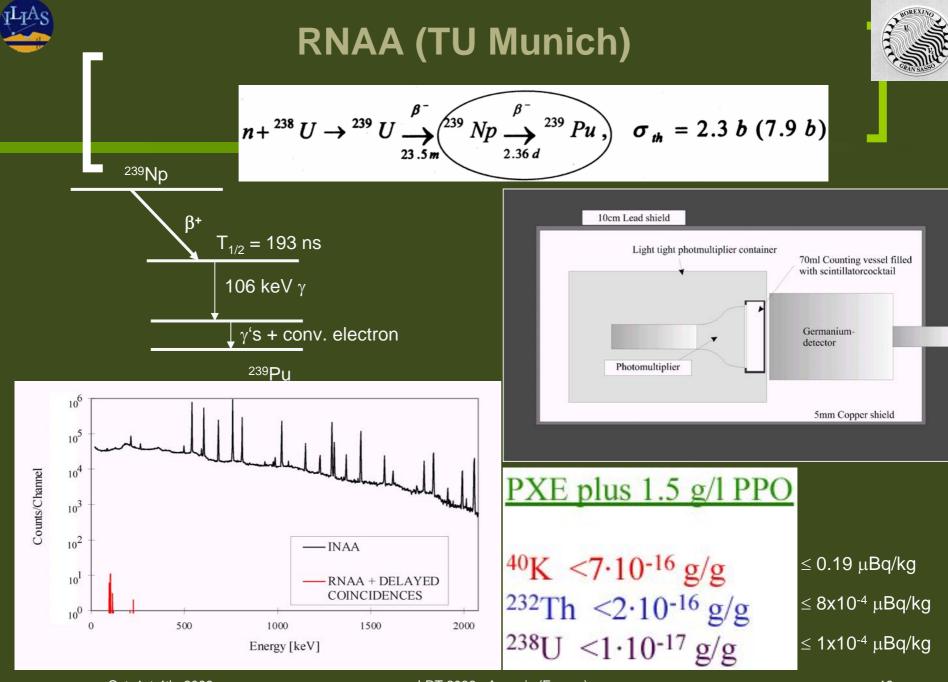
Source	at th	ivity or flux he position of the portional counter	Count rate > 0.5 [cpd]	ke∨
External sources		aliandar da 12		
Muons		$10^{-8} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.005	
Neutrons		$0^{-6} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	< 0.001	
Gamma rays		$0^{-6} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	< 0.02	
Rn + progenies	< 0.	.5 Bq m ⁻³	< 0.006	
K, Th, U in copper of the shiel	ding material < 2.	, 1, 1 mBq/kg	< 0.02	
Internal sources		712		
K in quartz	0.04	mBq/kg	0.0001	
Th in quartz	< 0.	.01 mBq/kg	< 0.0002	
U in quartz	< 1.	.2 mBq/kg	< 0.03	
⁶⁰ Co in iron cathode	< 7	mBq/kg	< 0.02	
K in iron cathode	0.06	mBq/kg	0.001 All (GNO run <mark>s</mark>
²²⁶ Ra in iron cathode	< 3	mBq/kg	< 0.2 reco	orded during t
Th in iron cathode	< 0.	.3 mBq/kg	< 0.017	50 days
U in iron cathode	< 0.	.4 mBq/kg	< 0.03	JU uays
Tritium in counting gas	6 TI	U	0.023	
⁸⁵ Kr in counting gas	< 0.	$.12 \text{ Bq m}^{-3}$	< 0.01	
Sum			< 0.39	
``	thode and 12 wit		0.45	
With pulse shape discrimination	n [counts/d]	som	ne contaminatior	
L-window fast	K-window fast		introduced during assembly (glassblowing)	
0.040				

NAA, ICP-MS, AMS

Neutron activation analysis

$$n + {}^{41}K \to {}^{42}K \xrightarrow{\beta^{-}}_{12.36\ h} {}^{42}Ca, \quad \sigma_{th} = 1.2\ b\ (1.2\ b)$$

$$n + {}^{232}Th \to {}^{233}Th \xrightarrow{\beta^{-}}_{22.3m} {}^{233}Pa \xrightarrow{\beta^{-}}_{27.0d} {}^{233}U, \quad \sigma_{th} = 6.1\ b\ (7.8\ b)$$


$$n + {}^{238}U \to {}^{239}U \xrightarrow{\beta^{-}}_{23.5m} {}^{239}Np \xrightarrow{\beta^{-}}_{2.36\ d} {}^{239}Pu, \quad \sigma_{th} = 2.3\ b\ (7.9\ b)$$

Sizeable cross sections and long enough half lives for delayed counting

Oct. 1st-4th, 2006

JLIAS

LRT 2006 - Aussois (France)

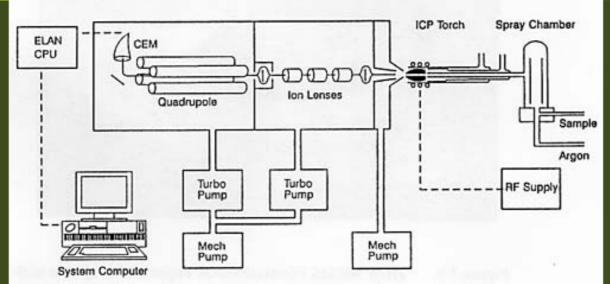
Oct. 1st-4th, 2006

LRT 2006 - Aussois (France)

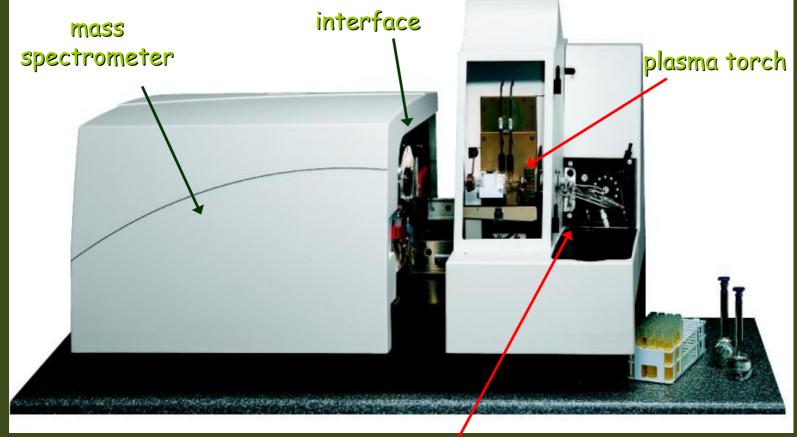
- a very sophisticated technique which detects rare isotopes
- → extraordinary sensitivity
- measurement of ¹⁰Be, ¹⁴C, ²⁶Al, ¹²⁹I and other radioisotopes of archaeological, geological, environmental interest

<u>external</u> microbeam line

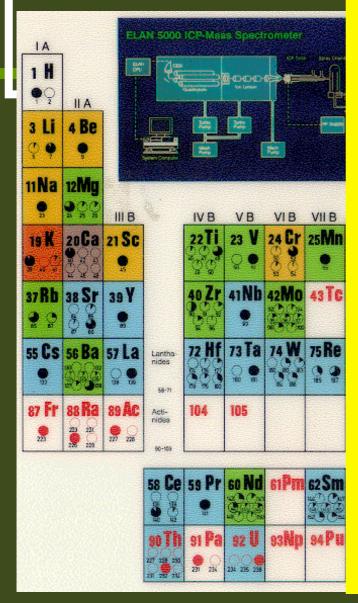
- 19


D

0


ILIAS

Inductively coupled plasma mass spectrometry (ICP-MS)



sample introduction

ILIAS

Detection limits of ICP-MS

²³⁸ U	~ $5 \times 10^{-14} \text{ g} < 1 \text{ nBq}$
²³⁵ U	~ $5 \times 10^{-15} \text{ g} < 1 \text{ nBq}$
²³⁴ U	~ $10 \times 10^{-17} \text{ g} ~ 20 \text{ nBq}$
²³⁶ U	~ $3 \times 10^{-17} \text{ g} < 1 \text{ nBq}$
²³⁹ Pu	~ $3 \times 10^{-17} \text{ g} < 100 \text{ nBq}$
²⁴⁰ Pu	~ $3 \times 10^{-17} \text{ g} < 300 \text{ nBq}$
²⁴¹ Pu	~ $3 \times 10^{-17} \text{ g} ~ 130 \mu\text{Bq}$
²⁴² Pu	~ $3 \times 10^{-17} \text{ g} < 1 \mu\text{Bq}$
²⁴¹ Am	~ 3 x 10 ⁻¹⁷ g <i>~</i> 5 µBq
⁹⁰ Sr	~ 1 x 10 ⁻¹⁵ g <i>~</i> 5 mBq
²³² Th	~ 3 x 10 ^{-1₄} g ~ 1 nBq
²³⁰ Th	~ 3 x 10 ⁻¹⁷ g ~ 20 nBq

Oct. 1st-4th, 2006

Comparison of detection limits

Table 3. Detection limit comparison (µg/L)						
Element	ICP-MS	ICP-AES	Flame AAS	GFAAS		
As	<0.050	<20	<500	<1		
AI	<0.010	<3	<50	<0.5		
Ва	<0.005	<0.2	<50	<1.5		
Be	<0.050	<0.5	<5	<0.05		
Bi	<0.005	<20	<100	<1		
Cd	<0.010	<3	<5	< 0.03		
Ce	<0.005	<15	<200000	ND		
Co	< 0.005	<10	<10	<0.5		
Cr	<0.005	<10	<10	<0.15		
Cu	<0.010	<5	<5	<0.5		
Gd	<0.005	<5	<4000	ND		
Ho	<0.005	<1	<80	ND		
In	< 0.010	<30	<80	<0.5		
La	<0.005	<0.05	<4000	ND		
Li	<0.020	<1	<5	<0.5		
Mn	< 0.005	<0.5	<5	<0.06		
Ni	<0.005	<10	<20	<0.5		
Pb	<0.005	<20	<20	<0.5		
Se	<0.10	<50	<1000	<1.0		
TI	<0.010	<30	<40	<1.5		
U	<0.010	<30	<100000	ND		
Y	<0.005	<0.5	<500	ND		
Zn	<0.02	<1.0	<2	<0.01		
ICP-MS, ICP-AES, Flame AAS: Detection limits (defined on the ba blank)		(defined on the basis	of 3 standard deviations of the			
GFAAS: ND:		Sensitivity (0.00	Sensitivity (0.0044 absorbance) measured with 20 μ L of sample Not determined			

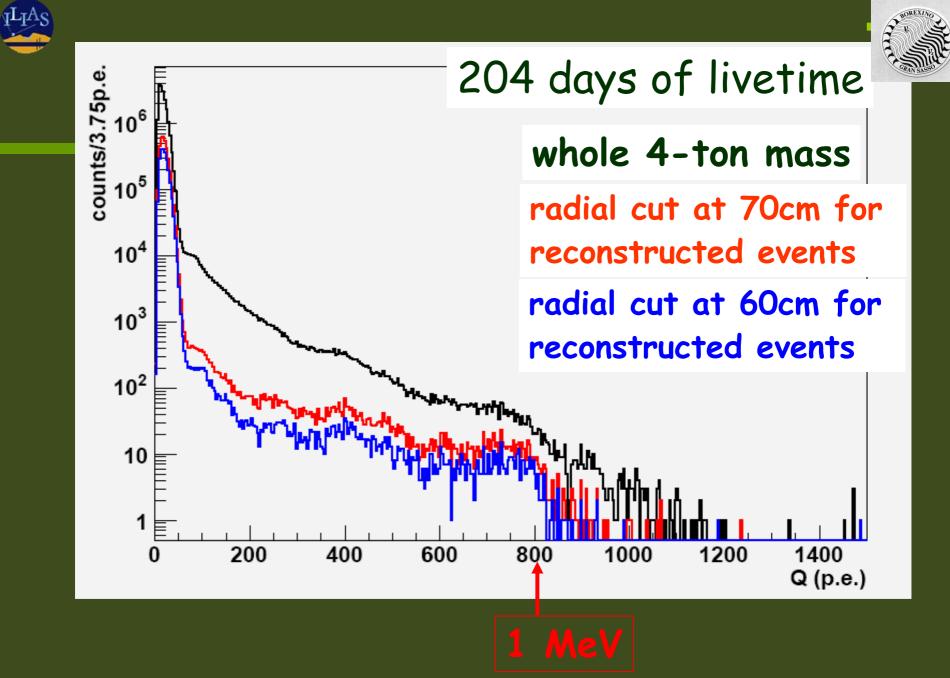
Special detectors (e.g. CTF)

Counting Test Facility (CTF)

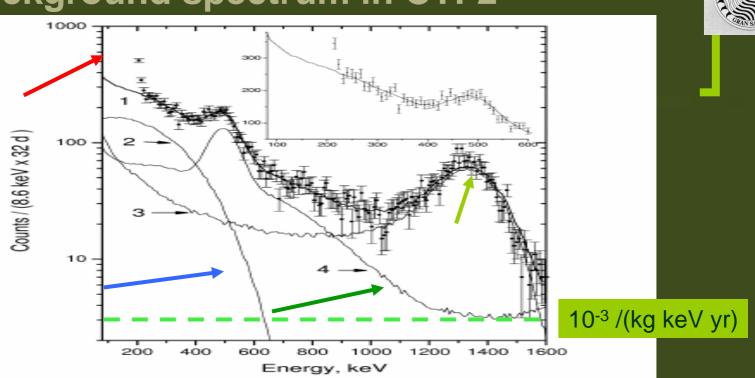
 CTF is the prototype of Borexino. Its main goal was to verify the capability to reach the very low-levels of contamination needed for Borexino

CTF campaigns


- 1. <u>CTF1</u>: 1995-1997
- 2. <u>CTF2</u>: 2000 (PXE)
- 3. <u>CTF3</u>: 2001 still ongoing


- 100 PMTs
- ~ 4 tons of scintillator
- 4.5 m thickness of water shield
- Muon-veto detector
- ${}^{14}C/{}^{12}C \sim 10^{-18}$ (measured: (1.94 ± 0.09) × 10^{-18}))
- 238 U ~ 10⁻¹⁶ g/g (measured: (3.5 ± 1.3) × 10⁻¹⁶) g/g, Rn daughters)
- 232 Th ~10⁻¹⁶ g/g (measured: (4.4 +1.5 _1.0) × 10⁻¹⁶) g/g)

CTF high mass and very low levels of background contamination make it a unique detector to search for rare or forbidden processes with high sensitivity



Background spectrum in CTF2

- The energy spectrum of the background counts in CTF is dominated by ¹⁴C at low energy (<200 keV);
- Ar, Kr (up to ~700 keV);

ILIAS

- ²³⁸U and ²³²Th daughters (up to ~3 MeV);
- external ⁴⁰K (peak at 1.4 MeV + continuum);
- Muons mainly affect the very high energy region of the spectrum and can be effectively removed with the muon-veto detector

Outlook and conclusions

Well-known background reduction techniques

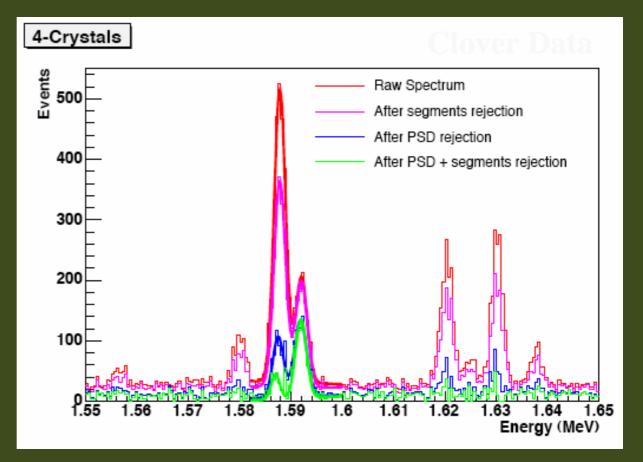
- muon veto
- anti-coincidence between detectors
- segmentation of readout electrodes
- pulse shape analysis (scintillators, semiconductors)
- coincidences in decay chain
- combination of complementary detection techniques (e.g. scintillation & ionisation)

Low-background electroformed copper - Soudan

Electroformed cups shown have wall thickness of only 250 mm!

- can be easily formed into thin, low-mass parts
- UG electroforming can reduce cosmogenics
- pre-processing can reduce U-Th
- recent results suggest cleaner than thought

Low-background electroformed copper -Laboratorio Subterraneo Canfranc


electroforming copper and lead melting facility started up

Segmentation R&D - Majorana collaboration

Data to confirm hypothesis that the PSD and segmentation cuts are orthogonal for Ge-diodes.

Ongoing improvement and R&D

- improved neutron shields (detector response, spectrum)
- improved material selection (more sensitive, better radiopurity e.g. PbWO₄ with archaeological lead)
- active shielding
- going deeper underground
- storage of freshly made construction materials underground
- multisegmented crystals or multiple crystals
- collaboration with producers (e.g. depleted Ge, crystal growing, Cu electroforming underground)
- the "ultimate" ultra-low background facility

Ongoing improvement and R&D

- future experiments need <u>more sensitive screening techniques</u> (< μ Bq/kg for ²²⁶Ra) \Rightarrow use of today's (e.g. CTF) or tomorrow's (e.g. GERDA) most sensitive detectors for screening

- future experiments need dedicated and highly sensitive screening and test techniques for <u>measuring and monitoring</u> <u>surface contaminations</u> (development and adaptation of existing techniques and methods to need, e.g. LA-ICP-MS)

- <u>reorganisation and optimisation of existing screening facilities</u> is necessary, because they are costly and measurement times can be rather lengthy

- <u>harmonisation</u> of how to report data and <u>intercomparison</u> programs for ultra low-level measurement techniques

Oct. 1st-4th, 2006

New (and old) research applications

- ultra low-level chemistry
- particle astrophysics (material and techniques applicable to rare events experiments)
- space science (e.g. micro meteorites, Mars samples, cosmic activation products, comet tail samples)
- atmospheric samples ((very) short lived isotopes, radionuclide composition)
- ocean samples (deep ocean water ⁶⁰Fe)
- in general application of low background techniques to interdisciplinary fields
 - low-level environmental radioactivity measurement and monitoring
 - radiodating (extension of determined ages towards the past)
 - ogeophysics (palaeoseismology, palaeogeology, sedimentation)Oct. 1st-4th, 2006LRT 2006 Aussois (France)

EU - FP7

the ILIAS initiative in the EU FP6 should be pursued

Iow background activities play an important role even outside the fundamental physics experiments
 proposal writing is ongoing