

Muon induced signals and isotope production in GERDA

L. Pandola INFN, Gran Sasso National Laboratories

Low Radiation Techniques, Modane, October 1st 2006

GERDA experiment at Gran Sasso

The GERmanium Detector Array experiment will look for 0v2β decay in ⁷⁶Ge using HP-Ge detectors enriched in ⁷⁶Ge

The experiment will be hosted in the Gran Sasso National Laboratory, under the Gran Sasso mountain (Italy), 3400 m w.e. $cosmic \mu$ flux reduced by a factor 10⁶

GERDA Collaboration 80 physicists 13 Institutions Italy, Germany, Russia, Belgium, Poland

October 1st 2006

Gerda physics goals

0
$$\nu\beta\beta$$
: (A,Z) \rightarrow (A,Z+2) + 2e⁻¹

Neutrinoless 2β -decay violates the lepton number conservation: $\Delta L=2$

Explore the Dirac/Majorana nature of neutrino and the absolute mass scale

Very rare process: $T_{1/2} > 10^{25}$ y

New generation experiments require unprecedented lowbackground conditions!

Claim from Klapdor-Kleingrothaus – et al., NIM A 522 (2004) 371

October 1st 2006

$$Q_{\beta\beta}$$
 = 2039 keV

The Gerda design

Use cryogenic liquid (liquid argon) as cooling medium and shield simultaneously \rightarrow array of naked detectors

Background components

	Background source	e Possible tools for reduction	
alk	External γ-rays (rock)	Multiplicity, passive shielding	
	Internal contamination	Multiplicity (for γ-rays), delayed coincidences (e.g. ⁶⁸ Ge)	
This to	Radioactive contamination of the setup materials (cryostat, holders, etc.)	Multiplicity, reduction of total mass, radiopurity, passive/active shielding	
ſ	Muon and neutron induced events	Muon veto, <mark>multiplicity</mark> , (active shielding)	
	Unstable isotopes produced by muons	Multiplicity (for γ-rays), delayed coincidence with muon veto	
	2v2β decay	Energy resolution	

To meet conservatively the background specification of 10^{-3} counts/(keV·kg·y) each single component should be smaller than 10^{-4} counts/(keV·kg·y) (goal) at Q_{BB}

October 1st 2006

Muon-induced background <u>Prompt background</u>:

e[±] and γ-rays from electromagnetic showers, γ-rays from neutron inelastic interactions or captures

Reduced by anticoincidence or segmentation (Phase II) and muon veto. Background reduction depends essentially on the veto efficiency only

Delayed background:

Production of long-lived unstable isotopes in the crystals or in the surrounding material \rightarrow veto not effective

Reduced by multiplicity or segmentation. Delayed coincidence cuts

Muon simulations

Energy spectrum sampled according to the parametrization of Lipari and Stanev, Phys. Rev. D 44 (1991) 3543 Energy and direction are sampled independently → checked with the MUSUN code that simplification does not affect results

October 1st 2006

Prompt muon-induced background

To get **below 10⁻⁴ counts/(keV kg y)** it is required a veto efficiency > 75% above 120 MeV (> 65% for liquid nitrogen)

Feasible with 0.5% photocatode coverage and VM2000 foils → 80 8" PMT. Placement of the PMTs optimized with a dedicated simulation of the Cherenkov light

October 1st 2006

High-energy neutrons from the rock

High-energy neutrons produced in the surrounding rock by cosmic ray muons are a background source → they can enter in the experimental setup. Veto is uneffective

Major background source indicated by Mei & Hime, Phys. Rev. D 73 (2006) 053004, for a Majorana-like experiment (= compact experiment with high-Z passive shielding)

 \blacktriangleright (n,n' γ) interactions on Pb, Cu and Ge

Simulated with spectrum and total flux (~ 300 n/($m^2 \cdot y$)) from hep-ph/0401032 (2004). Typical energy \approx 100 MeV

Background: ~ $6 \cdot 10^{-5}$ counts/(keV kg y)

Reduced below 10⁻⁵ counts/(keV kg y) by segment anti-coincidence

Different design with thick low-Z shielding: water (3 m) and the cryogenic liquid (2 m) are effective neutron moderators

October 1st 2006

Delayed background

Muon-induced interactions can create long-lived unstable isotopes in the setup materials with Q > Q_{BB}

veto rate: 2.5 ev/minute

cannot be vetoed if $T_{1/2} > 100$'s ms

Isotopes in the crystals are the most relevant (also β -rays detected with high-efficiency).

In crystals: ⁷⁴Ga, ⁷⁵Ga, ⁷⁶Ga, ⁶⁸Ge, ⁶⁹Ge, ⁽⁷⁷Ge) ⁷¹Zn

In cryoliquid: ¹³N, ¹¹C, ¹²B, ³⁸Cl, ³⁹Cl, ⁴⁰Cl

In water: ¹⁶N, ¹⁴O, ¹²B, ⁶He, ¹³B

Red \rightarrow isotopes > 10⁻⁶ counts/(keV·kg·y)

Most dangerous is ⁷⁷Ge from thermal neutrons: no threshold, high cross section (0.14 b), high decay Q-value (2.7 MeV), scales with enrichment

October 1st 2006

Thermal neutron capture in enrGe

Neutron capture in ⁷⁶Ge (0⁺) can eventually populate ⁷⁷Ge_{q.s.}(7/2⁺) or ^{77m}Ge (1/2⁻, 159 keV)

October 1st 2006

Isotopes production rate

Isotope	Liquid Nitrogen		Liquid Argon	
	nucl/(kg·y)	cts/(keV·kg·y)	nucl/(kg·y)	cts/(keV·kg·y)
⁷⁴ Ga/ ⁷⁵ Ga/ ⁷⁶ Ga	< 0.08	< 3·10 ⁻⁵	< 0.1	< 4·10 ⁻⁵
⁶⁸ Ge	0.07	4 ·10 ⁻⁶	0.08	5·10 ⁻⁶
⁶⁹ Ge	0.38	1.10-6	1.8	5·10 ⁻⁶
⁷⁷ Ge/ ^{77m} Ge	0.05	1·10 ⁻⁵	0.51	1.1.10-4
³⁸ Cl	-	-	46 day-1	3.3.10-5
⁴⁰ Cl	-	-	2.7 day-1	4.10-6

Actual background depends on: production rate, location and decay scheme. Isotopes produced in water and cryostat $< 10^{-6}$ cts/(keV·kg·y) ³⁸Cl and ⁴⁰Cl reduced below 10^{-5} cts/(keV·kg·y) by segmentation cuts Main contribution (for LAr) from ⁷⁷Ge/^{77m}Ge $\rightarrow 10^{-4}$ cts/(keV·kg·y)

October 1st 2006

Luciano Pandola

= goal!

Rejection strategies for ^{77m}Ge

A 4-minutes long (=4 $T_{1/2}$) dead-time after each muon veto trigger is not feasible (2.5 events/minute)

<u>Possibility</u>: dead time after each coincidence between muon veto (primary μ) and Ge crystals (prompt γ -rays)

The cut efficiency depends on the probability to observe the capture γ -rays: 6 MeV released after neutron capture in ⁷⁶Ge. Intensities and energies are very poorly known

The efficiency is > 50% in the most pessimistic case (energy released in a single photon) \rightarrow ^{77m}Ge background can be reduced by at least a factor of two

October 1st 2006

Conclusions

Prompt μ -induced background can be kept under control, provided the veto is efficient

Isotope production (delayed background) is more relevant for LAr (required for shielding γ -rays from cryostat)

Background rate from all isotopes (⁶⁸Ge, ⁶⁹Ge, ...) can be kept below 10⁻⁵ counts/(keV·kg·y) (possibly with segment coincidence), except ^{77m}Ge

 ^{77m}Ge gives mostly single-site events. Rejection strategies based on delayed coincidence between muon, prompt γ -rays and β -decay

The background from muons is < 10⁻⁴ counts/(keV·kg·y) for LAr → within specifications

October 1st 2006

Backup slides

October 1st 2006

Muon-induced fluxes

Muon-induced **flux** of **secondary particles** (γ -rays and neutrons) in the detector region \rightarrow possible background sources

	Flux of γ -rays above Q _{ββ} (2039 keV)	Integral neutron flux		
Cryoliquid:	particles/(m²·h)	particles/(m²·h)		
Liquid nitrogen	5.4	0.72		
Liquid argon	9.8	5.7		

Fluxes depend on the cryogenic liquid \rightarrow different A, Z and density (= different x₀ and E_c) affect propagation of neutrons and γ -rays

Neutron flux is increased by a factor of 8 in liquid argon:

- larger neutron yield from muons ($\propto A^{0.8} \rho$)
- smaller efficiency in neutron moderation and absorption

October 1st 2006

Prompt muon-induced background

Prompt energy deposition at $Q_{\beta\beta}$ is dominated (> 95%) by γ -rays from muon-induced electromagnetic showers

(n,n' γ) on ⁷⁴Ge and ⁷⁶Ge mainly produce γ -rays below $Q_{\beta\beta}$ (not a background!). Radiative capture in Ge less likely than inelastic

If the muon passes through the detector \rightarrow large energy deposition (tens of MeV). Far from $Q_{\beta\beta}$!

Systematic uncertainty on the prompt background:

Item	Uncertainty	Med Phys 32	
Primary muon spectrum	10%	(2005) 1696; IEEE	
e \pm and γ -ray tracking in Geant4	< 5% -	TNS 52 (2005) 910	
EM interactions of HE muons	< 5% ←	IEEE TNS 53 (2006) 513	
Total	≈ 11%		

October 1st 2006

Neutrons & isotopes in the setup

Neutrons are produced by muon-induced interactions (e.g. photonuclear reaction) \rightarrow sources of prompt and delayed background

Simulation of muon-induced neutron yield → "hot" topic in Monte Carlo, mainly in DM experiments. Data are scarce (and sometimes inconsistent) → comparison between different codes (Fluka, MCNPX)

Systematic uncertainty on the neutron flux:

Item	Uncertainty	
Primary muon spectrum	10%	From NIM A 545 (2005) 398
Neutron yield from muons (Z < 35)	40%	(2003) 390
Neutron tracking in Geant4	20% 🔶	From NIM A 560 (2006) 454
(thermal to hundreds of MeV)		
Total	≈ 45%	

Uncertainty for isotopes produced directly by neutrons (e.g. via capture) → same order of magnitude. Uncertainty of a factor 2-4 for other isotopes (e.g. photo-nuclear) October 1st 2006

Rejection strategies for ^{77m}Ge

A 4-minutes long (=4 $T_{1/2}$) dead-time after each muon veto trigger is not feasible (2.5 events/minute)

<u>Possibility</u>: dead time after each coincidence between muon veto (primary μ) and Ge crystals (prompt γ -rays)

The cut efficiency depends on the probability to observe the capture γ -rays: 6 MeV are released after neutron capture in ⁷⁶Ge. Intensities and energies are very poorly known

The efficiency is > 50% in the most pessimistic case (energy released in a single photon) \rightarrow 77m Ge background can be reduced by at least a factor of two

Production rate of ^{77(m)}Ge depends on the specific isotopic composition of the enriched detectors

⁷³Ge has a capture cross section 100 times larger than ⁷⁶Ge \rightarrow it absorbs neutrons and produces ⁷⁴Ge (stable). The capture γ -rays are prompt (\rightarrow muon veto)

October 1st 2006