

Surface event identification in the EDELWEISS Ge bolometers

Xavier-François Navick (CEA Dapnia)

LRT2006 - Aussois October 06

Outlines

- Introduction
- EDELWEISS's ionization-heat detectors
- Surface events in EDELWEISS-I
- Developments to suppress the surface events

Edelweiss collaboration

Expérience pour DEtecter Les WIMPs En SIte Souterrain

- CEA-Saclay DAPNIA/DRECAM
- CRTBT Grenoble
- CSNSM Orsay
- FZK/Univ. Karlsruhe
- JINR Dubna
- IAP Paris
- IPN Lyon
- Laboratoire Souterrain de Modane
 - 1700 m depth under the Fréjus tunnel (4800 we)
 - $-4 \mu /m^2/d$ (10⁶ less than at the surface)

Edelweiss-II detectors

- 2 x 320g Ge/NTD with Cu-springs EDW-I holder
- 19 x 320g Ge/NTD with EDW-II holder and teflon clamp
- 2 x 320g Ge/NTD with Cu-springs EDW-II holder
- 1 x 50g heat and light IAS detector (AI_2O_3)
- 7 x 400g Ge/NbSi

October 2006

Ionization-heat detectors

Rejection power

- Simultaneous measurement of ionization and heat => Evt per evt identification
- Q = Eionisation / Erecul
 - Q = 1 for electronic recoil (ambiant radioactivity)
 - $Q \approx 0.3$ for nuclear recoil (WIMP and neutron)
 - \Rightarrow discrimination γ /n > 99.9% pour Er> 15keV

Edelweiss-II Ge/NTD detectors

- Developed by CEA Saclay and Canberra
- Optimized NTD size in collaboration with LBNL for sub keV resolution
- New holder and connectors (Teflon and copper only)

October 2006

Incomplete charge collection

- Amorphous layers (Ge or Si) improve the charge collection
- At very low T and V : electric field is screened => diffusion phase
- Some carriers are trapped in the "wrong" electrode => incomplete collection

Effect of the amorphous layers

Edelweiss-I data with phonon trigger

Surface events in Edw-I data

Surface contamination

- α 's from ²¹⁰Po (E α =5.3 MeV)
 - Q=0.3 $\rightarrow \alpha$ decays near surfaces
 - Rate ~ 400 /m²/d

- As expected, non-fiducial part more exposed
- ²¹⁰Pb on Cu covers or Ge surfaces
 - Should see Pb recoils and β's

- No ²⁰⁶Pb recoil peak at 100 keV observed as heat-only events: ²¹⁰Pb implanted in Cu, not Ge.
- Rate of 0.3 < Q < 1.0 events at low energy consistent with expected surface β's
- does not exclude contribution from ¹⁴C
- By removing Cu between detectors, these events should disappear, or ID by coincidences

X-F Navick

October 2006

Surface events suppression

- Initial effort : improve the cupper treatment (Rn contamination study) and reduce the surface exposure to radon
- Passive rejection : improve the charge collection for surface event
 - Physics of the Ge and Si amorphous sublayer
 - Detectors with thick electrodes
- Active rejection : <u>identification of the surface events</u>
 - Interleaved electrodes

localization of the event

- Pulse shape analysis of the charge signals
- Detectors sensitive to athermal phonons ⇒ Ge/NbSi detectors

Passive protection

• Amorphous layers: Al / aGe:H / cGe / aGe:H / Al => GGA

Interleaved electrodes design

Preliminary studies and current developments

Schematics of detector fitted with interleaved collection electrodes: colors correspond to different voltage biases

Actual design

Simulation studies

Carrier trajectories and event populations in detector fitted with interleaved collection electrodes

Localization by ionization shape analysis

center signal

guard signal

- Time-resolved charge measurement
 (with HEMT?)
 ¹⁰⁵⁷Co 122keV γ event f³⁷Co 122keV φ³Co 122keV φ³
- center fit Signal (mV) Signal (mV) guard fit 2 Comparaison with a set of simulated pulses 1 A 400 -800 -469 80 -000 Time (ns) Electron trajectory 1 μs Hole V = +6.2V

centre & guard electrode

trajectory

T=16mK

1/1/

¹⁰⁹Cd 85keV e- event

center fit

guard fit

-489

<u>Time (</u>ns)_

800

r

Ζ

з

center signal

guard signal,

Code for ionization signal simulation

Test at LSM on a 320g Edw-I detector

Due to electronic noise, surface event rejection by pulse-shape analysis is limited in practice to high-energy events only ($>\approx$ 50 keV e.e.)

Ge detectors with NbSi sensors

Surface event discrimination: Nb-Si thin films as athermal phonon sensors

400g Ge detector with NbSi sensors

LRT2006

October 2006

200g Ge detector with NbSi sensors in the Edw-I set-up at LSM

⁵⁷Co y source

(a) Ionization yield vs. recoil energy(thermal component of heat signals only):note the large population of surfaceevents of poor charge collection

(b) With the proper cuts in the athermal component of phonon signals to remove surface events

