Passive Shielding in CUORE

Fabio Bellini

Università di Roma "La Sapienza" & INFN Roma on behalf of the CUORE Collaboration

2nd Topical Workshop in Low Radioactivity Technique Aussois, France, Oct. 01-04, 2006

Cryogenic Underground Observatory

Single dilution refrigerator ~10 mk

for Rare Events

 ββ0v, Cold Dark Matter searches proposal hep/ph 0501010

Closed packed array of 988 TeO₂ 5x5x5 cm³ crystals \Rightarrow 741 kg TeO₂ \Rightarrow 204kg ¹³⁰Te

CUOR(ICINO) @ LNGS

Cuoricino experiment is installed in the

Underground National Laboratory of Gran Sasso L'Aquila – I TALY

the mountain providing a 3500 m.w.e. shield against cosmic rays

CUORE -(hall A)

Cuoricino⁻

R&D final tests for CUORE (hall C)

Background challenge

CUORE $\beta\beta0\nu$ sensitivity will depend strongly on the bkg level and detector performance

In 5 years of data taking

CUORE GOAL:

test inverse hierarchy: 19-50 meV

b(c/keV/kg/y)	$\Gamma~({ m keV})$	$T_{1/2}^{0\nu}$ (y)	$ \langle m_{ u} angle ({ m meV})$
0,01	10	$1,\!5\! imes\!10^{26}$	23 - 118
0,01	5	$2,\!1\! imes\!10^{26}$	19 - 100
0,001	10	$4,\!6{ imes}10^{26}$	13 - 67
0,001	5	$6,5 imes 10^{26}$	11 - 57

Background reduction

BKG SOURCES

- Radioactive contaminations in the detector materials, on the detector surfaces
- Radioactive contaminations of the set-up shielding included
- Neutrons
- Muon induced neutrons

THE SOLUTION

- Select construction materials according to their contamination (ICPMS, n-activation, HPGe)
- Avoid contaminated materials (use Cu, Pb and TeO₂ where you can)
- Avoid activation (cosmogenic isotopes ->reduce exposure above grounds)
- Build thick efficient gamma and neutron shields
- Build (eventually) a muon veto to tag muon-induced neutrons

CUORE background prediction based on Cuoricino experience – Cuoricino bkg model + specific measurement with a dedicated detector (RAD – HallC)

Cuoricino: 0.18 ±0.01 counts/keV/kg/y

hall C: < 2.5-3 • 10⁻² counts/keV/kg/y

70% interpreted as surface bkg30 % 208Tl from 232Th in cryostat shield

CUORE Shielding

CUORE will be Installed in a dilution refrigerator shields:

- 6 cm Roman Pb inner shield on the side (<4mBq/kg ²¹⁰Pb)
- 35 cm Pb inner shield on top (16±4 Bq/kg² Pb)
- 25 cm Pb external shield (16±4 Bq/kg ²¹⁰Pb)
- Neutron shield: 18 cm Borated(10%)-polyethylene
- Anti-radon box: nitrogen overpressure
- Other geometries simulated
- internal shield: 3cmCu+ 3m Roman Pb
- different Boron concentration in n-shield
- borated Polyethylene internal to Pb shields

FLUKA vs GEANT

Studies and comparisons in literature:

Araujo et al. hep-ex/0411026 Wang et al. hep-ex/0101049 Kudryavtsev, Spooner, McMillan hep-ex/0303007 Mei, Hime astro-ph /0512125 Wulandari et al, hep-ex/0401032

- Different neutrons productions for em and had cascades in GEANT4 and FLUKA
- Muon spallation in GEANT4 disagree with experimental results
- In Pb: a factor 2 less neutrons in GEANT4
 Neutron production material dependent: <n>~A^{0.81}
 Neutron production muon energy dependent: <n> ~E_μ^{0.75}
 Poor data in Pb, reasonable agreement except Bergamosco (a factor ~3 less in MC)
- Use FLUKA to compute neutron energy spectrum
- ◆ Use this spectrum as input for GEANT4 for the CUORE DBD background estimate
- Measurements with neutron source for MonteCarlo validation(..up to 10 MeV)
 ⁷

External Neutrons sources

- •(α,n) reactions from U and Th contaminations and spontaneous ²³⁸U fission in rock, concrete, setup-materials (E_n<10MeV)
- Muon-induced neutrons in rock:

0.1% of neutrons from local radioactivity but hard to shield, very energetic neutrons (up to several GeV) can travel far from the μ track before being thermalized and captured.

Muons generation

• Muon flux measured by MACRO experiment (Hall B) as a function of polar (18° per bin) and azimuthal (~10° per bin) angle

Angular distribution: generate uniform flux inside a 5 m radius sphere and use MACRO maps (hit or miss technique) to tailor underground muon flux

• Energy spectrum: parametrized from ground level flux (well know) and transported underground taking into account, for each given direction, amount and shape of overburden rock

Muon generated with underground energy: E<2000GeV

Used muon flux: Φ = (3.2+0.2) •10⁻⁴ μ/s/m²
 M. Cribier et al. (Gallex Col.)
 Astron. Part. Phys. 6, 129 1997

note: this is the highest in literature Mei, Hime astro-ph /0512125 : $Φ = (2.58+0.3) ●10^{-4} µ/s/m^2$ *Wulandari et al, hep-ex 0401032:* $Φ = (2.78+0.2) ●10^{-4} µ/s/m^2 ~1 µ/h/m^2$

Thanks to

G Battistoni

COORE

Muon distributions

Thanks to G Battistoni

PBEAM

Fluka Physics Cards

Precision card fully analogue

transport

New-Default card biased neutron (8 times faster)

Muon-induced neutron flux on detector

$\Phi = (57.7 \pm 3.6) \cdot 10^{-9} \text{ n/s/cm}^2$

 $\Phi = (29.4 \pm 1.9) \cdot 10^{-9} \text{ n/s/cm}^2$

Environmental neutron flux contribution: 1 order of magnitude less $\Phi=(7.6 \pm 0.7) \cdot 10^{-9} \text{ n/s/cm}^2$ $\Phi=(3.6 \pm 0.4) \cdot 10^{-9} \text{ n/s/cm}^2$

note: induced γ not included ... work in progress

Background in DBD region (GEANT4)

Anti-coincidence spectrum

Anti-coincidence bkg: (FWHM:5keV, ROI: 5 σ around 2530 keV, 10 ms)

Preliminary results

 (1.5 ± 0.3) •10⁻⁴ counts/keV/y/kg $(5.6 \pm 1.2) \cdot 10^{-5}$ counts/keV/y/kg

Total bkg: $(2.4 \pm 0.2) \cdot 10^{-3}$ counts/keV/y/kg $(9.8 \pm 0.8) \cdot 10^{-4}$ counts/keV/y/kg

Environmental neutron flux contribution: one order of magnitude less

note: induced γ not included ... work in progress

Measurement with neutron source

Am-Be source: ~2200 n/s

4 different measurements

- standard set-up
- source in a 30 cm PET box
- without internal n-shield and different source position

hall C shielding: 10 cm Pb + 7cmPet+2cmCB₄+10cm Pb

Measurement with neutron source

Preliminary results

configuration: source in 30 cm PET box

Simulation seem to underestimate neutron flux

n and muon-induced neutron not included -> minor contribution expected

External radiation: $\Phi=7.7 \cdot 10^6 \gamma/d/cm^2$ measured with Ge detector and used as input for GEANT bkg= $1.5 \cdot 10^{-5}$ counts/kg/keV/y with 24 cm external Pb shield

- Cryostat ²³²Th bulk contamination contribution reduced by properly shielding in CUORE cryostat
- + selection of construction material

 $bkg = < 10^{-3} c/keV/kg/y$

- ◆ External Pb shield contamination: 100 µBq/kg bkg = 2.4 • 10⁻⁴ counts/kg/keV/y
- Internal shield
 - Roman lead contamination (6cm Pb):

	$60 \pm 17 \ \mu Bq/kg$ $bkg = 6 \cdot 10^{-3} \ counts/keV/y/kg$ $<71 \ \mu Bq/kg$ $bkg < 7 \cdot 10^{-3} \ counts/keV/y/kg$		need to measure again?
• DownRun Pb	<22 µBq/kg	bkg < 2•10 ⁻³ counts/keV/y/kg	

(but ⁶⁰Co contamination & 27 Bq/kg ²¹⁰Pb)

Cu shield contamination : <12 µBq</p>

bkg <2.4•10⁻³ counts/keV/y/kg

(better for Th contamination.. worse for ⁶⁰Co contamination and neutron activation)

CUORE background estimate

	source	10-3 counts/keV/y/kg	
	external gamma	<1	
	external apparatus	<1	
	detector structure bulk	<1	
	crystal bulk	<0.1	
detector surfaces crystal surfaces neutrons muon induced neutrons		~20-40 –	► The limiting factor up to now
		<3	
		~0.01	
		~0.1	

Next Steps

COOR

- Double check simulation and add statistics
- Validate simulation with neutron source
- Include Isotope activation
- Include muon background and gamma induced background
- Evaluate background also in dark matter region
- Understand correlation with muons & study veto system for muons tagging
- Publish results soon

Cuoricino bkg knowledge

• In $0\nu\beta\beta$ region:

- 30 ± 10% ²⁰⁸Tl (2614.5 keV line) via multi-Compton events from ²³²Th in cryostat shields
- 10 ± 5% from crystals surface ${}^{238}U$ and ${}^{232}Th$ contamination
- 50 ± 20% from degraded α produced by ²³⁸U and ²³²Th contaminations of *mounting structure* main candidate the *copper surface*
- negligible contribution from 2505 (1173γ+1332γ) keV ⁶⁰Co tail due *Cu cosmogenic activation*

Background reduction

- Surface contribution:
 - test wih new crystals surface cleaning (etching, lapping with 2µm SiO₂clean powder) reduction of a factor 4
 - test wih new Cu cleaning (etching, electro-polishing, passivation) and complete coverage of Cu facing the crystal with ~50µm PET film reduction of ~40% of flat continuum background

The extrapolated contribution to CUORE are

- Crystal Surface contamination contribution
- Copper Surface contamination contribution
- New structure with reduced Cu amount is being tested right now

MC simulation Cu contribution

 $< 2.5 \bullet 10^{-2}$ counts/kg/keV/y

<3•10⁻³ counts/kg/keV/y

<5 • 10⁻² counts/kg/keV/y

Muon-induced neutrons

Muon-induced neutrons in shields (mainly in Pb, <n>~ A^{0.81}) Not shielded, can be tagged by a muon veto

- Muon energy spectrum undreground: from simulation or measured
- Material geometry and composition ($\sigma_{\mu}^{em} \sim Z^2/A$, $\sigma_{\mu}^{had} \sim A^{0.76}$)

Physical process

- µ spallation,
- μ elastic scattering with bound n,
- μ induced em cascades,
- μ induced hadronic cascades,
- ◆ negative µ capture,
- secondary neutron production

Neutron production material dependent <n>~ $A^{0.81}$ Neutron production muon energy dependent <n>~ $E_{\mu}^{-0.75}$

Mei, Hime 21 *astro-ph /0512125*

