Status of the purification at KamLAND

F. Piquemal CENBG CNRS/IN2P3 and Université Bordeaux I

LRT workshop, Aussois (France) October, 1-4 2006

KamLAND Collaboration

Tohoku University, Japan, California Institute of Technology, USA University Bordeaux 1, France, Drexel University, USA, IHEP, China, Kansas State University, USA, Triangle Universities Nuclear Lab., USA, University of Alabama, USA, University of Hawaii, USA, University of New Mexico, USA, University of Tennessee, USA, Lawrence Berkeley National Lab., USA, Louisiana State University, USA, Stanford University, USA

KamLAND Physics

Supernovae neutrinos

KamLAND Detector

Kamioka mine overburden: 2700 w.m.e. Muon rate: 0.34 Hz

1000 tons of liquid scintillator 80% dodecane+ 20% pseudocumene + PPO

Mineral oil Buffer against external radiation

1979 PMTs (1325 17" + 554 20" Photocathode coverage 34%

Outer water Cherenkov detector for µ veto

KamLAND installation

Reactor Anti-Neutrino Results

Reactor Anti-Neutrino Results

Geoneutrinos Results

Calibration improvements

4pi calibration system

⁶⁰Co calibration data

Systematics on anti-neutrino reactor 6.5 % \rightarrow 4%

Solar Neutrinos

⁷Be neutrinos

Experimental uncertainty: 40 %

Real-time measurement

sin²0.

Solar Neutrinos

Expected solar yield: 340 v /Kt/day (280 keV – 800 keV

Solar Neutrino detection

Anti-neutrino detection

 $\overline{\mathbf{v}} + \mathbf{p} \longrightarrow \mathbf{e}^{+} + \mathbf{n} \qquad \mathbf{prompt}$ \downarrow $\mathbf{delayed} \qquad \mathbf{n} + \mathbf{p} \longrightarrow \gamma (2.2 \text{ MeV})$

Powerful signature

Small background

Neutrino detection

$$v_x + e^- \longrightarrow v_x + e^-$$

Unspecific Signature

High level of background

Internal Backgrounds

 \mathcal{O}

External Backgrounds

External background : 40 K and 208 Tl Supressed by fiducial cut R < 4 m Expected rates 200 x lower than $v_{(7Be)}$ signal

Cosmogenic induced by muons : ¹¹C, ¹²B, ⁷Li, ⁷Be,... Tagged by veto and in some case by delayed neutron

Purification goals

Measured Activities in KamLAND

	T _{1/2}	Current KamLAND Concentrations	Purification Goal
¹⁴ C	5730 y	0.5 Bq /m ³	0.5 Bq/m ³ OK
²¹⁰ Pb	22 y	60 mBq/m ³	$0.6 \ \mu Bq/m^3$
⁴⁰ K	10 ⁹ y	1.9 · 10 ⁻¹⁶ g/g	10 ⁻¹⁸ g/g
⁸⁵ Kr	11 y	700 mBq/m ³	1 μ Bq /m ³
²³⁸ U	10 ⁹ y	3.5 · 10 ⁻¹⁸ g/g	10 ⁻¹⁸ g/g OK
²³² Th	10 ¹⁰ y	5.2 · 10 ⁻¹⁷ g/g	10 ⁻¹⁶ g/g OK

LS Purification

Removal of ⁸⁵Kr, ⁴⁰K, ²¹⁰Pb, ²¹⁰Bi, ²¹⁰Po, ²²²Rn

The KamLAND Collaboration is currently studying the effects of :

- Distillation
- Nitrogen Purging
- Adsorption
- Heating

LS Distillation

^{nat}Kr Reduction: 10⁵ Measured by GC

²²²Rn Reduction: 10⁶ Measured by β-α coincidence of 214 Bi – 214 Po decay (233 µs)

²¹²Pb Reduction: 10⁴ Measured by β-α coincidence of $^{212}Bi - ^{212}Po$ decay (0.43 µs)

Operates at a 1-2 L/hr

Adsorption

Adsorption is the adherence to a surface.

Adsorption removes charged atoms, i.e. Pb⁺² by retention on the surfaces of the adsorption particles (silica, Alusil, Cu/Mn)

²¹²Pb Reduction: 30

Measured by Germanium detector or β - α coincidence of $^{212}Bi - ^{212}Po$ decay (0.43 μ s)

Heating

Heating is used to break organo-metallic bonds which then ionize the Pb, Po, Bi, etc atom and can be removed by adsorption or distillation.

Operating Temperature: 100 – 200 °C

Used in combination with distillation or adsorption column. Same removal efficiency seen in both systems

²¹²Pb Reduction boost factor: 10

Online monitoring

- Purpose is to insure that we are obtaining high levels of purification and not re-contaminating after purification procedure.
- ⁸⁵Kr measurement system which will increase our sensitivity to low concentrations by using a cold trap and then passing through an RGA.
- ²²²Rn measurement (mini-KamLAND)
- Other activities (U, Th, ²¹⁰Pb) are too low to measure without a detector like KamLAND or long counting times.

Purification line

Expected signal for ⁷Be v

After 3. 10⁻⁵ reduction for ²¹⁰Pb

Toward pep/CNO detection

¹¹C reduction by 3-fold coincidence:

- 1) Muon
- 2) Neutron (2.2MeV
 - γ after ~200 μ s)
- 3) ¹¹C decay (τ =29.4m)

New electronics to detect neutrons After large muon signal Improvement of muon fitter and Muon tracking

Summary

Anti-neutrino reactor:

- Spectral distorsion
- Data taking ongoing
- Update of data with full volume calibration soon

Geoneutrinos:

- First detection of geoneutrinos
- Effort to reduce systematic error on background

Solar neutrinos:

- LS purification line is ready
- Goal is to measure 7Be neutrino flux whithin 10%
- Backgrounds improvements for reactor anti-neutrino and geoneutrinos
- Studies for pep neutrinos detection