Measurement of the cosmogenic <sup>11</sup>C background with the Borexino Counting Test Facility

> Davide Franco Università degli Studi di Milano & INFN

2nd Topical Workshop in Low Radioactivity Techniques



October 1 - 4, 2006 - Aussois, FRANCE

### Outline

- pep and CNO neutrino physics in deep underground liquid scintillator detectors
- Main background contaminants
- The <sup>11</sup>C problem and the three-fold coincidence technique
- Measurement of the <sup>11</sup>C production rate with CTF
- How to open a window to the pep and CNO neutrino flux measurement in large scintillator detectors

## pep and CNO neutrinos





- Ideal sources for probing the transition between matter and vacuum dominated oscillations (MSW-LMA)
- Directly related with the *pp* fusion reaction in the Sun
- Improves our knowledge of the solar neutrino luminosity
- Helpful in the age estimation of the Globular Clusters

Non-standard interactions, massvarying neutrinos, CPT violation, large  $\theta_{13}$  sterile neutrino admixture....

### Organic liquid scintillator detectors

|                      | KamLAND                                                         | BOREXino                                                      | SNO+                                                          |
|----------------------|-----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| Scintillator         | Dodecane<br>(80%) +<br>Pseudocumene<br>20%)                     | Pseudocumene                                                  | linear<br>alkylbenzene                                        |
| Mass                 | 1 kt                                                            | 0.3 kt                                                        | 1 kt                                                          |
| Depth                | 2700 mwe                                                        | 3800 mwe                                                      | 6000 mwe                                                      |
| μ–Rate               | 26,000 d <sup>-1</sup><br>(26 d <sup>-1</sup> t <sup>-1</sup> ) | 1,500 d <sup>-1</sup><br>(5 d <sup>-1</sup> t <sup>-1</sup> ) | 70 d <sup>-1</sup><br>(0.07 d <sup>-1</sup> t <sup>-1</sup> ) |
| <e<sub>µ&gt;</e<sub> | 285 GeV                                                         | 320 GeV                                                       | 350 GeV                                                       |



# Detection signature in liquid organic scintillator



- Energy resolution: 380 p.e./MeV
- LMA-BP2004-LUNA
- 3 years statistics in 100 tons of scintillator

- Neutrino elastic scattering off electrons
- Energy range of observation:
  0.8 1.4 MeV
- Expected flux in BOREXino-like scintillator (BP2004+LUNA+LMA):
  - □ *pep*-v: 9x10<sup>-3</sup> d<sup>-1</sup> ton<sup>-1</sup>
  - □ CNO-v: 6x10<sup>-3</sup> d<sup>-1</sup> ton<sup>-1</sup>

### Expected background contamination

Trace contaminations: •  ${}^{210}$ Bi (Q<sub>β</sub> = 1.16 MeV) •  ${}^{214}$ Bi (Q<sub>β</sub> = 3.27 MeV) •  ${}^{212}$ Bi (Q<sub>β</sub> = 2.25 MeV) •  ${}^{40}$ K (Q<sub>β</sub> = 1.32 MeV Q<sub>EC</sub> = 1.51 MeV) Cosmogenic background: •  ${}^{11}$ C (Q<sub>β</sub> = 1.98 MeV)

### For the pep and CNO flux measurement, BOREXino require:

- •<sup>238</sup>U @ 10<sup>-17</sup> g/g
- <sup>232</sup>Th @ 10<sup>-17</sup> g/g
- <sup>nat</sup>K @ 10<sup>-15</sup> g/g



#### BOREXino



#### KamLAND



NA54 @ CERN: 100 and 190 GeV muon beams on a <sup>12</sup>C target: <sup>11</sup>C represents 80% of all the muon-induced contaminants and more than 99% in the CNO pep-v energy window

Hagner et al., Astropart. Phys. 14, 33 (2000)

| <sup>11</sup> C Rate   |            |               |  |
|------------------------|------------|---------------|--|
| (cts / day / 100 tons) |            |               |  |
|                        | All energy | 0.8 – 1.4 MeV |  |
| KamLAND                | 107        | 55            |  |
| BOREXino               | 15         | 7.4           |  |
| SNO+                   | 0.15       | 0.074         |  |

### The BOREXino Case

- Energy range: [0.8 1.4] MeV
- Expected n-rate (BP2004+LUNA+LMA):
  - □ *pep*-v: 9x10<sup>-3</sup> d<sup>-1</sup> ton<sup>-1</sup>
  - □ CNO-v: 6x10<sup>-3</sup> d<sup>-1</sup> ton<sup>-1</sup>
- Internal background : 6x10<sup>-3</sup> d<sup>-1</sup> ton<sup>-1</sup> (assuming 10<sup>-17</sup> g/g of U and Th)
- In situ production muon-induced <sup>11</sup>C Rate:
  - $R_{11C} = 7.5 \times 10^{-2} d^{-1} ton^{-1} (R_{11C} = 14.6 \times 10^{-2} d^{-1} ton^{-1} in the whole energy spectrum)*$

The goal: to reach a signal-to-background ratio 1, we require a reduction factor  $f > R_{11C}/R_v = 8$  <sup>11</sup>C production and decay

( $\mu$ )+ secondaries) + <sup>12</sup>C  $\rightarrow \mu$  (+ secondaries) + <sup>11</sup>C + n

 $n + p \rightarrow d + \gamma$ 

 $^{11}C \rightarrow ^{11}B + e^+ + v_e$ 

### PROBLEMS!!!!

Coincidence among:

- cosmic muon:
  - rate at LNGS (3700 mwe): 1.16 hr<sup>-1</sup> m<sup>-2</sup>
  - average energy: 320 GeV
- gamma from neutron capture:
  - energy: 2.2 MeV
  - capture time: 250  $\mu$ s
- positron from <sup>11</sup>C decay:
  - deposited energy between 1.022 and 1.982 MeV

mean life: 30 min

### Cross sections for <sup>11</sup>C production from <sup>12</sup>C as a function of energy



#### Cumulative range of $\mu$ -induced secondaries



| NA54 Kam                                            | ioka | LN   | GS                   | SNC  | DLab |
|-----------------------------------------------------|------|------|----------------------|------|------|
|                                                     |      |      | $\searrow$           |      |      |
| $E_{\mu}$ [GeV]                                     | 100  | 190  | 285                  | 320  | 350  |
| Process                                             |      | [    | Rate $10^{-4}/\mu/r$ | m]   |      |
| ${}^{12}C(p,p+n){}^{11}C$                           | 1.8  | 3.2  | 4.9                  | 5.5  | 5.6  |
| $^{12}C(p,d)^{11}C$                                 | 0.2  | 0.4  | 0.5                  | 0.6  | 0.6  |
| $^{12}\mathrm{C}(\gamma,\mathrm{n})^{11}\mathrm{C}$ | 19.3 | 26.3 | 33.3                 | 35.6 | 37.4 |
| $^{12}C(n,2n)^{11}C$                                | 2.6  | 4.7  | 7.0                  | 8.0  | 8.2  |
| $^{12}C(\pi^+,\pi+N)^{11}C$                         | 1.0  | 1.8  | 2.8                  | 3.2  | 3.3  |
| $^{12}C(\pi^-,\pi^-+n)^{11}C$                       | 1.3  | 2.3  | 3.6                  | 4.1  | 4.2  |
| $^{12}C(e,e+n)^{11}C$                               | 0.2  | 0.3  | 0.4                  | 0.4  | 0.4  |
| ${}^{12}C(\mu,\mu+n){}^{11}C$                       | 2.0  | 2.3  | 2.4                  | 2.4  | 2.4  |
| Invisible channels                                  | 0.9  | 1.6  | 2.4                  | 2.7  | 2.8  |
| Total                                               | 28.3 | 41.3 | 54.8                 | 59.9 | 62.2 |
| $1\sigma$ systematic                                | 1.9  | 3.1  | 4.4                  | 5.0  | 5.2  |
| Measured                                            | 22.9 | 36.0 |                      |      |      |
| $1\sigma$ experimental                              | 1.8  | 2.3  |                      |      |      |
| Extrapolated                                        |      |      | 47.8                 | 51.8 | 55.1 |

C. Galbiati et al., Phys. Rev. C 71, 055805 (2005)

Neutrons are produced in association with 95.5% of the muon-induced <sup>11</sup>C

### Test of the coincidence technique with the Counting Test Facility

- 4 tons of scintillator
- 1 m radius vessel housing the scintillator
- 2 m radius "shroud"
- 3.6 p.e./PMT for 1 MeV electron
- Muon veto
- 100 PMT (OC: 21%)
- Buffer of water
- Energy saturation: 6 MeV





### Data selection

#### Muon selection

• cut on the number of photoelectrons detected by the muon-veto



#### **Neutron selection**

- For each detected  $\mu$ , the following event in the time window Tn = [20, 2000]  $\mu$ s is selected as a candidate event for a neutron capture  $\gamma$
- E < 2.6 MeV

#### <sup>11</sup>C selection

- After each  $\mu$ - $\gamma$  coincidence, <sup>11</sup>C candidates are selected in a subsequent time window Tw = 300 min, 10 times the <sup>11</sup>C mean life.
- Optimal energy range: 1.15 < E < 2.25 MeV
- Distance between <sup>11</sup>C event and gamma < 35 cm</li>

### Muon induced neutrons

LVD measurement: neutron multiplicity as function of the distance from the muon track





 $< N >= (1.5 \pm 0.4) \cdot 10^{-4}$  neutrons/(muon event)/(g/cm<sup>2</sup>)

### CTF detection efficiency from MC



| Efficiency in CTF   |                                                  | Value |
|---------------------|--------------------------------------------------|-------|
| ε <sub>vis</sub>    | Visible channels                                 | 0.955 |
| € <sub>end</sub>    | End of run during the time window T <sub>w</sub> | 0.990 |
| ε <sub>t</sub>      | Time window T <sub>n</sub> neutron selection     | 0.925 |
| 8 <sub>escape</sub> | Neutrons contained in the vessel                 | 0.732 |
|                     | <sup>11</sup> C energy cut                       |       |
| ε <sub>c</sub>      | Neutron capture gamma<br>energy > 0.2 MeV        | 0.563 |
|                     | <sup>11</sup> C-γ distance < 35 cm               |       |
| Total               |                                                  | 0.360 |

### CTF results



$$F(t) = \frac{N}{t} \cdot e^{t/\tau} + B$$

n = number of events  $\tau =$  11C lifetime B = random coincidences



### Measured <sup>11</sup>C production rate

$$R(^{11}C) = \frac{N}{\frac{4}{3}\pi r^2 \rho T} \cdot \frac{1}{\varepsilon_{vis} \cdot \varepsilon_{end} \cdot \varepsilon_t \cdot \varepsilon_{escape} \cdot \varepsilon_c}$$

r = fiducial volume radius (0.8 m) ho = scintillator density (0.88 g/cm<sup>3</sup>) T = detector live time (611 days) Main systematic sources:

- position reconstruction: 1.5%
- light yield: 8.5%

$$R(^{11}C) = [13.0 \pm 2.6(\text{stat}) \pm 1.4(\text{syst})] \times 10^{-2} \text{ d}^{-1} \text{ ton}^{-1}$$



### Large scintillator detector potential



### Large scintillator detector potential

#### Assuming efficiency 1 and only the spherical cut

| $\rm S/B_0$ | 0.05    | 0.4      | 36       |
|-------------|---------|----------|----------|
|             | KamLAND | Borexino | @ SNOLab |
| R = S/B     | D [%]   | D [%]    | D [%]    |
| 0.1         | 0.4     |          |          |
| 0.2         | 11.6    |          |          |
| 0.3         | 50.6    |          |          |
| 0.4         | 87.4    | < 0.1    |          |
| 0.5         | 98.8    | < 0.1    |          |
| 0.8         | > 99.9  | 0.1      |          |
| 1           |         | 0.3      |          |
| 2           |         | 6.7      |          |
| 3           |         | 27.8     |          |
| 4           |         | 58.3     |          |
| 5           |         | 85.3     |          |
| 8           |         | > 99.9   |          |
| 100         |         |          | < 0.1    |
| 500         |         |          | 2.6      |

S/B ratio before the cuts

D = detector mass-time fraction loss

### BOREXino rejection efficiency



D = 14%



### Conclusions

- The CTF measurement has demonstrated that the three-fold coincidence technique is powerful in localizing in space and time <sup>11</sup>C decays
- <sup>11</sup>C can be removed by blinding detector volumes around it
- Waiting SNO+, BOREXino and KamLAND can open a window to pep and CNO neutrino spectroscopy

