The COBRA Double Beta Decay Experiment

Jaime Dawson University of Sussex

COBRA - People

D. Dobos, C. Gößling, H. Kiel, D. Münstermann, S. Oehl, T. Villett University of Dortmund

> J. Dawson, C. Reeve, J. Wilson, K. Zuber University of Sussex

P.F. Harrison, B. Morgan, Y. Ramachers, D. Stewart University of Warwick

> A. Boston, P. Nolan, S. Rigby University of Liverpool P. Seller

Rutherford Appleton Laboratory

B. Fulton, A. Smith, R. Wadsworth University of York

> T. Bloxham, M. Freer University of Birmingham

M. Junker Laboratori Nazionali del Gran Sasso

> F. Simkovic University of Bratislava

H. Krawczynski, I. Jung Washington University in St. Louis

Contents

- What is COBRA?
- Backgrounds
- Current Status (R&D Phase)
- Future plans

Cadmium-Telluride O-neutrino double-Beta Research Apparatus

A large array of CdZnTe (CZT) Semiconductor Detectors

1cm³ CdZnTe Crystal

K. Zuber, Phys. Lett. B 519,1 (2001)

Isotopes

nat. ab. (%) Q (keV) Decay mode Zn70 0.62 1001 ß-ß-Cd114 28.7 <u>ß-ß-</u> 534 Cd116 2805 ß-ß-7.5 **Te128** 31.7 868 ß-ß-**Te130** 2529 ß-ß-33.8 1096 Zn64 $\beta + EC$ 48.6 Cd106 1.21 2771 $\beta + \beta +$ Cd108 EC/EC 231 0.9 $\beta + EC$ **Te120** 0.1 1722

Advantages

- Semiconductor (Good energy resolution, clean)
- Source = Detector
- Room temperature operation
- Modular Design (coincidences)
- Two isotopes at once
- Industrial development of CZT
- ¹¹⁶Cd above 2.614 MeV
- Possibility of Tracking (solid-state TPC)

Backgrounds

- High energy Gammas
- Muons
- Alphas and Betas
- Cosmogenics
- Neutrons
- 2νββ

The 64 detector array

Scalable modular design, fine granularity to explore coincidences Currently only 1 layer installed

- 0.4 kg CdZnTe
- Nitrogen flushing

Physics

- Access to 2v2EC
- Precision measurement of ¹¹³Cd
- New limits

The first layer

Installed at LNGS about three months ago

- Upper limits on activity of ²¹⁴Bi in crystal material: 5 events in 81.7 days giving activity of < 0.26mBq.kg⁻¹ (better than <51mBq.kg⁻¹ obtained from LNGS counting facility)
- Relax alpha energy cut (320 8000keV) to give greater sensitivity to events from passivation coating. See 108 event-pairs

$$^{214}_{83}\text{Bi} \xrightarrow{\beta} ^{214}_{84}\text{Po} \xrightarrow{\alpha} ^{210}_{82}\text{Pb}$$

Beta cut 320-3500 keV (end point 3.3MeV) Alpha cut 7000-8000 (emitted with 7.7MeV)

New Passivation Coating

The 64k Array Feasibility Study Extensive GEANT 4 simulations to specify

 Acceptable contamination levels including cosmogenics

Material	Mass (kg)	Background Contributions
CdZnTe	417.92	natural radioactivity
volume		²³⁸ U, ²³² Th, ⁴⁰ K, ¹³⁷ Cs, ²¹⁰ Po
CdZnTe	417.92	cosmogenic backgrounds
volume		¹²⁴ Sb, ¹²⁶ Sb, ^{110m} Ag, ⁸⁸ Y, ⁵⁶ Co, ⁵⁸ Co,
		$^{60}{\rm Co},^{114m}{\rm In},^{105}{\rm Ag},^{99}{\rm Rh},^{88}{\rm Zr},^{102m}{\rm Rh}$
CdZnTe	417.92	$2\nu\beta\beta$ of ¹¹⁶ Cd
volume		
Delrin	62.69	natural radioactivity
volume		²³⁸ U, ²³² Th, ⁴⁰ K, ¹³⁷ Cs
Air/Gas	0.49	222 Rn
volume		
Material	Area (m^2)	Background Contributions
CdZnTe	41.65	²¹⁰ Pb
surface		
Chamber	3.77	²¹⁰ Pb
surface		

Shielding and Veto

- Simulated LNGS neutron flux
- ~3x10⁻⁷ counts/year/kg/keV in the crystals.
- <1 neutron per year! (in 64000 detectors)

D. Stewart et al., submitted to Nucl. Inst. Meth. A

Sensitivity

The solid state TPC

Energy resolution

Tracking

- Massive background reduction
- Positive signal information

Pixellated CdZnTe detectors

Pixellisation - I

- Massive BG reduction by particle ID , 200µm pixels (example simulations):
- $\alpha = 1$ pixel, β and $\beta\beta =$ several connected pixel, $\gamma =$ some disconnected p.

Pixellisation - II Tests of 16×16 1.6mm pixel detectors

– ASIC

readout

Summary

- COBRA plans to use a large amount of CdZnTe semiconductors for double beta searches
- Collaboration of about 25 people established
- Currently preparing a 64 detector array (about 0.5 kg), installation at LNGS started spring 2006
- Design changed to allow easy upgrade to larger scales
- Exploring pixellated detectors for background reduction.

Published Results

 Existing limits from CZT under rough background conditions (532gd):

Kiel et al, Nuclear Physics A 723 499 (2003) [nucl-ex/0301007] $0\nu\beta\beta \ ^{64}Zn \ T_{1/2}>1.3^*10^{16}y$ $0\nu\beta+EC \ ^{120}Te \ T_{1/2}>2.2^*10^{16}y$ $2\nu ECEC \ ^{120}Te \ T_{1/2}>9.4^*10^{15}y$ $2\nu ECEC \ limits \ for \ ^{106}Cd, \ ^{108}Cd, \ ^{64}Zn$ Muenstermann & Zuber [nucl-ex/0204006] $2^{nd} \ forbidden \ EC \ of \ ^{123}Te \ T_{1/2}>3.2^*10^{16}y$

Half Life T _{1/2} (years)				
Isotope	COBRA	CZT 2003*	World Best	
70 Zn	> 2.8 . 10 ¹⁷	> 1.3 . 10 ¹⁶	$> 0.7 . 10^{18}$	
¹²⁸ Te	> 4.6 . 10 ¹⁹	> 8.8 . 10 ¹⁸	> 1.1 . 10 ²³	
¹³⁰ Te	> 8.1 . 10 ¹⁹	> 3.3 . 10 ¹⁹	> 1.8 . 10 ²⁴	
114 Cd	> 4.8 . 10 ¹⁹	> 6.4 . 10 ¹⁸	> 2.5 . 10 ²⁰	
¹¹⁶ Cd	> 1.0 . 10 ¹⁹	> 8.0 . 10 ¹⁸	> 1.7 . 10 ²³	

Contraction of the second

	Prolimite				
	Half Life T _{1/2} (years)				
Isotope	COBRA	CZT 2003*	World Best		
106 Cd $0\nu\beta^+\beta^+$	> 7.0 . 10 ¹⁷	> 1.5 . 10 ¹⁷	> 2.2 . 10 ¹⁹		
106 Cd $0\nu\beta^+$ EC	> 1.6 . 10 ¹⁸	> 3.8 . 10 ¹⁷	> 3.7 . 10 ²⁰		
¹²⁰ Te $0\nu\beta^+EC$	> 9.3 . 10 ¹⁶	$> 2.2 . 10^{16}$	$> 2.2 . 10^{16 *}$		
64 Zn $0\nu\beta^+$ EC	$> 2.6 . 10^{17}$	$> 2.8 . 10^{16}$	$> 2.3 . 10^{18} (68\%)$		

*Kiel et al, Nuclear Physics A 723 499 (2003) [nucl-ex/0301007]

Natural Thorium Spectrum

