Ultrapure gases – from the production plant to the laboratory

> H. Simgen, G. Zuzel Max-Planck-Institut für Kernphysik

Motivation Measurement techniques Gas purification techniques - Adsorption - Distillation Survey of gases from european suppliers Test of whole delivery chain Conclusion

Motivation

Inert gases are used in low-level nuclear and particle physics:

- for cleaning / as blankets
- -liquefied: for shielding / as scintillator
- Count-rates down to event/year-scale require highest purity!

 Usually orders of magnitude cleaner than commercial specifications (6.0, <1ppm)
Task: Removal of dissolved radioactive impurities (e.g. ²²²Rn, ⁸⁵Kr, ³⁹Ar)

Example: Purity requirements in nitrogen for BOREXINO

	Required purity	
²²² Rn	<3 atoms/m ³	<7 µBq∕m³
Krypton	<0.14 ppt	⁸⁵ Kr: <0.2 μBq/m ³
Argon	<0.36 ppm	³⁹ Ar: <0.6 µBq/m ³

Motivation

- Measurement techniques
- Gas purification techniques
 - Adsorption
 - Distillation
- Survey of gases from european suppliers
- Test of whole delivery chain
- Conclusion

Noble gas mass spectrometer

Kr: 10⁻¹³ cm³

Low background proportional counter

active volume: 0.5-1 cm³

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 ²²²Rn detection limit (including background from counter-filling): ~15 atoms !

 Motivation Measurement techniques Gas purification techniques - Adsorption - Distillation Survey of gases from european suppliers Test of whole delivery chain Conclusion

N₂ purification from Ar/Kr/Rn by adsorption techniques

→ H. Simgen: "Adsorption techniques for gas purification" LRT 2004, Sudbury

Conclusions:

Ar/N₂ separation impossible
Kr/N₂ separation difficult
Rn/N₂ separation "easy"
Main issue: re-contamination

N₂ purification plant @ LNGS

 ²²²Rn in N₂ before purification:
~50 μBq/m³ (STP)

Adsorber mass: 2.1 kg Flow-rate: up to 100 m³/h (STP)

²²²Rn in N₂ after purification: <0.5 µBq/m³ (STP)

Argon purification from ²²²Rn

Argon: Cryogenic shield in GERDA \diamond ²²²Rn purity requirement: <0.5 μ Bq/m³ Concerning adsorption: $-N_2$ and Ar behave similar (both very different from radon) $-But: T(LAr) = T(LN_2) + 10K$ Technical difficulty: Argon can easily freeze!

Argon purification from ²²²Rn

 ²²²Rn in Ar before purification:
~200 μBq/m³ (STP)

Adsorber mass: 0.15 kg Flow-rate: up to 20 m³/h (STP)

²²²Rn in Ar after purification: <0.5 µBq/m³ (STP)

Air separation plant

Motivation Measurement techniques Gas purification techniques - Adsorption - Distillation Survey of gases from european suppliers Test of whole delivery chain

Conclusion

Ar/Kr concentration in nitrogen from different sources

Description	Ar [ppm]	Kr [ppt]
Linde AG (Worms)	O.4	6
Westfalen AG (Hörstel)	0.03	7
SOL (Mantova)	0.2	9
Goal	0.36	0.14

Problems with sampling

 ◆ Gaseous samples (1-5 ccm) have bad volume/surface ratio
⇒ high risk of contamination

 \diamond Thus: Liquid samples (240 I LN₂)

Ar/Kr concentration in nitrogen from different sources

Description	Ar [ppm]	Kr [ppt]
Linde AG (Worms)	0.4	6
Westfalen AG (Hörstel)	0.03	7
SOL (Mantova)	0.2	9
Linde AG (Worms)	0.04	4
Westfalen AG (Hörstel)	0.0005	0.06
SOL (Mantova)	0.005	<mark>0.04</mark>
Goal	0.36	0.14

Problems with sampling

 Even liquid samples must be prepared very carefully

 No appropriate sampling port for small-scale samples available at Linde plant

Thus: Test-tank installed @ MPIK

Ultrapure nitrogen from LINDE

Ar/Kr concentration in nitrogen from different sources

Description	Ar [ppm]	Kr [ppt]
Linde AG (Worms)	0.4	6
Westfalen AG (Hörstel)	0.03	7
SOL (Mantova)	0.2	9
Linde AG (Worms)	0.04	4
Westfalen AG (Hörstel)	0.0005	0.06
SOL (Mantova)	0.005	0.04
Linde AG (Worms)	0.013	0.1
Goal	0.36	0.14

Search for ultrapure N₂ on the market - Summary

Air separation plants produce N₂ of very high purity

- Contaminations are brought in by transport / refilling / storage
- Conclusion (for BOREXINO):

Full delivery chain (from the production plant to the laboratory) needs to be tested under realisitic conditions.

Motivation Measurement techniques Gas purification techniques - Adsorption - Distillation Survey of gases from european suppliers Test of whole delivery chain Conclusion

Total ²²²Rn budget inside tank: 65 mBq Converted in ²²²Rn concentration: 6 μBq/m³ (STP)

Time dependency of ²²²Rn (tank 90% full)

Results on Argon / Krypton

Conditions	C _{Ar} [ppb]	C _{Kr} [ppt]
In liquid phase	12 ± 2	0.02 ± 0.005
In gas phase	7 ± 1	0.006 ± 0.004
BOREXINO goal	<360	<mark><0.1</mark> 4

 No dependency on filling level of tank
Gas phase concentration always lower than liquid phase concentration
Supply chain succesfully tested!

²²²Rn dependency on filling level

	C _{Rn} [µBq/m³] (STP)	
Conditions	Liquid phase	Gas phase
V _{LN2} ~14 m ³ (90 % filled)	8 ± 1	7 ± 1
V _{LN2} ~6 m ³ (38 % filled)	10 ± 1	26 ± 3
V _{LN2} ~3 m ³ (19 % filled)	11 ± 1	30 ± 3
V _{LN2} ~0.8 m ³ (5 % filled)	38 ± 5	42 ± 9
V _{LN2} ~200 I (almost empty)	237 ± 13	47 ± 3

²²²Rn in gas phase / liquid phase An attempt of interpretation

Motivation Measurement techniques Gas purification techniques - Adsorption - Distillation Survey of gases from european suppliers Test of whole delivery chain Conclusion

Conclusion

 ²²²Rn problem can be solved "in the lab" by adsorption techniques

- Distillation is better approach for Ar/Kr purification
- Final Ar/Kr concentration strongly dependent on storage / refilling / transport
- Can be controlled (tank design / refilling procedure)
- Final ²²²Rn concentration determined by storage tank