Status and background considerations of XMASS experiment

> Yeongduk Kim Sejong University

for the XMASS collaboration

LRT2006 Oct. 1-4, 2006 Aussois, France

Outline

- 1. Various signal rates in large LXe detector
- 2. 800kg detector design
- 3. Gamma backgrounds in 800 kg detector
- 4. Neutron backgrounds
- 5. Possible calibration sources

Signals expected with natural LXe

XMASS : homogeneous single phase LXe detector. Confining FV→self shielding effect for low energy events

Status of 800 kg detector

 Basic performances have been confirmed by100 kg prototype detector.

- ✓ Vertex and energy reconstruction by likelihood fitting
 ✓ Self shielding power.
- ✓ BG level(~ 10^{-2} dru @ 100 keV, consistent with MC).

• Detector design is under progress using MC

- ✓ Structure and PMT arrangement (812 PMTs)
- ✓ Event reconstruction
- ✓ BG estimation

• New experimental hall will be prepared.

✓ Necessary size of shielding around the chamber

Structure of 800 kg detectortried to optimize the photocathode coverage.

tried to minimize the wall effect.

12 pentagons / 60 triangles pentakisdodecahedron

Hexagonal PMT

5 triangles make pentagon

10 PMTs / triangle surface

- Total 812 hexagonal PMTs immersed into liq. Xe
- ~70% photo-coverage
- Radius to inner face ~44cm

Each rim of a PMT overlaps to maximize coverage

Event reconstruction(Simulation)

Vertex reconstructed

- Up to <~40cm, events are well reconstructed with position resolution of ~2~3cm
- Out of 42cm, grid whose most similar distribution is selected because of no grid data
- In the 40cm~44cm region, reconstructed events are concentrated around 42cm,

but they are not mistaken for those occurred in the center

No wall effect

800kg BG study

Estimation of γ **BG from PMTs**

- Inside PMT, put vacuum space, and ceramic board.
- Decays of ²³⁸U at ceramic board is simulated.
- assumed 10 times lower background than present R8778 pmt. → 1.26 x 10⁵ decays/day
- Used Geant4 for all sequential decays.

```
      R8778 PMT
      238U
      : 1.8×10<sup>-2</sup> Bq/PMT

      232Th
      : 6.9×10<sup>-3</sup> Bq/PMT

      40K
      : 1.4×10<sup>-1</sup> Bq/PMT
```

Result of ²³⁸U background

Shielding size should be estimated to fix the size of the new hall.

A proposal of shielding for 800kg detector
Water shield for both ambient gammas and fast neutrons.
Simple, not expensive, good for neutrons

MC geometry

Configuration for simple estimation

- Put 80cm diameter liquid Xe ball
- Assume several size of water shield of 50 – 300cm thickness.
- Assume copper vessel (2cm thickness) for liquid Xe.
- Actual shape may be cylinder, but assumed as sphere for simplicity of MC.

There are technical issues to be solved.

(1) γ attenuation

More than 200cm water is Needed to reduce the BG to the PMT BG level

- Sum up the total histogram = 4.65
- 4.65*50(keV/bin)*804(kg)/ 86400(sec/day) →2.2Hz

(2) Fast neutron attenuation

Calibration Issues for homogeneous detector.

• to define fiducial volume for low energy events, we need to confirm the position resolution with definite source.

• Attenuation length of 20 keV gammas in LXe ~ 50 micrometer.

 \rightarrow source size should be small.

- For lower energy and position calibration, need X-ray source.
- Electro deposition of I-125 on 20 micrometer metal wire is planned.
- Locate the wire source in many positions in LXe.

²²⁰Rn(Thoron) source for position calibration Beta-alpha coincidence events can be used to check the position resolution of low energy beta events since we know the position of alpha events acurately.

Since the chamber volume is small, most of the Rn gas will enter to Lxe chamber before decay.

If we flow 220Rn+Xe gas for an hour, then within 10 minutes, most will be ²¹²Pb.

- For 10⁵ beta-alpha coincidence events below E(beta)<100 keV with 10 hours data taking, the activity of ²²⁸Th should be ~ 20 kBq.
- Whole volume of LXe can be studied.
- Is there any background left over ? \rightarrow should be checked.

G4 simulation

New experimental hall will be made in kamioka mine for XMASS and other similar scale experiments.

Other similar scale experiments such as CANDLES(DBD) can be housed.

Summary

- Multi-purpose ultra low background experiment with large mass liquid Xe.(ton scale)
- 800 kg detector: mainly for dark matter search.
 10² improvement of sensitivity above existing experiments is expected.
- Designing 800 kg detector is under progress.
 - \checkmark BG estimation is done.
 - \checkmark schematic shielding is studied.
 - \checkmark New excavation is planned.
 - ✓ Hamamatsu PMT will be fixed, detail design is going on.